k8s_PaaS/第七章——Promtheus监控k8s企业家应用.md

3099 lines
82 KiB
Bash
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## 第七章——Promtheus监控k8s企业家应用
##### 前言:
> 配置是独立于程序的可配变量,同一份程序在不同配置下会有不同的行为。
##### 云原生Cloud Native程序的特点
> - 程序的配置,通过设置环境变了传递到容器内部
> - 程序的配置,通过程序启动参数配置生效
> - 程序的配置通过集中在配置中心进行统一换了CRUD
##### Devops工程师应该做什么
> - 容器化公司自研的应用程序通过Docker进行二次封装
> - 推动容器化应用,转变为云原生应用(一次构建,到处使用)
> - 使用容器编排框架kubernetes合理、规范、专业的编排业务容器
### Prometheus监控软件概述
> 开源监控告警解决方案,[推荐文章](https://www.jianshu.com/p/60a50539243a)
>
> 当然一时半会你可能没那么快的去理解,那就跟我们先做下去你就会慢慢理解什么是时间序列数据
>
> [https://github.com/prometheus](https://github.com/prometheus)
>
> [https://prometheus.io](https://prometheus.io)
#### Prometheus的特点
- 多维数据模型:由度量名称和键值对标识的时间序列数据
- 内置时间序列数据库TSDB
- promQL一种灵活的查询语言可以利用多维数据完成复杂查询
- 基于HTTP的pull拉取方式采集时间序列数据
- 同时支持PushGateway组件收集数据
- 通过服务发现或静态配置发现目标
- 支持作为数据源接入Grafana
##### 我们将使用的官方架构图
![1582697010557](assets/1582697010557.png)
> **Prometheus Server**服务核心组件通过pull metrics从 Exporter 拉取和存储监控数据,并提供一套灵活的查询语言PromQL
>
> **pushgateway**类似一个中转站Prometheus的server端只会使用pull方式拉取数据但是某些节点因为某些原因只能使用push方式推送数据那么它就是用来接收push而来的数据并暴露给Prometheus的server拉取的中转站这里我们不做它。
>
> **Exporters/Jobs**负责收集目标对象host, container…的性能数据并通过 HTTP 接口供 Prometheus Server 获取。
>
> **Service Discovery**服务发现Prometheus支持多种服务发现机制文件DNSConsul,Kubernetes,OpenStack,EC2等等。基于服务发现的过程并不复杂通过第三方提供的接口Prometheus查询到需要监控的Target列表然后轮训这些Target获取监控数据。
>
> **Alertmanager**:从 Prometheus server 端接收到 alerts 后会进行去除重复数据分组并路由到对方的接受方式发出报警。常见的接收方式有电子邮件pagerduty 等。
>
> **UI页面的三种方法**
>
> - Prometheus web UI自带的不怎么好用
> - Grafana美观、强大的可视化监控指标展示工具
> - API clients自己开发的监控展示工具
>
> **工作流程**Prometheus Server定期从配置好的Exporters/Jobs中拉metrics或者来着pushgateway发过来的metrics或者其它的metrics收集完后运行定义好的alert.rules这个文件后面会讲到记录时间序列或者向Alertmanager推送警报。更多了解<a href="https://github.com/ben1234560/k8s_PaaS/blob/master/%E5%8E%9F%E7%90%86%E5%8F%8A%E6%BA%90%E7%A0%81%E8%A7%A3%E6%9E%90/Kubernetes%E7%9B%B8%E5%85%B3%E7%94%9F%E6%80%81.md#prometheusmetrics-server%E4%B8%8Ekubernetes%E7%9B%91%E6%8E%A7%E4%BD%93%E7%B3%BB">Prometheus、Metrics Server与Kubernetes监控体系</a>
##### 和zabbixc对比
| Prometheus | Zabbix |
| ------------------------------------------------------------ | ------------------------------------------------------------ |
| 后端用golang开发K8S也是go开发 | 后端用C开发界面用PHP开发 |
| 更适合云环境的监控尤其是对K8S有着更好的支持 | 更适合监控物理机,虚拟机环境 |
| 监控数据存储在基于时间序列的数据库内,便于对已有数据进行新的聚合 | 监控数据存储在关系型数据库内如MySQL很难从现有数据中扩展维度 |
| 自身界面相对较弱很多配置需要修改配置文件但可以借由Grafana出图 | 图形化界面相对比较成熟 |
| 支持更大的集群规模,速度也更快 | 集群规模上线为10000个节点 |
| 2015年后开始快速发展社区活跃使用场景越来越多 | 发展实际更长,对于很多监控场景,都有现成的解决方案 |
由于资源问题,我已经把不用的服务关掉了
![1583464421747](assets/1583464421747.png)
![1583464533840](assets/1583464533840.png)
![1583465087708](assets/1583465087708.png)
### 交付kube-state-metric
> **WHAT**为prometheus采集k8s资源数据的exporter能够采集绝大多数k8s内置资源的相关数据例如pod、deploy、service等等。同时它也提供自己的数据主要是资源采集个数和采集发生的异常次数统计
https://quay.io/repository/coreos/kube-state-metrics?tab=tags
~~~~
# 200机器下载包
~]# docker pull quay.io/coreos/kube-state-metrics:v1.5.0
~]# docker images|grep kube-state
~]# docker tag 91599517197a harbor.od.com/public/kube-state-metrics:v1.5.0
~]# docker push harbor.od.com/public/kube-state-metrics:v1.5.0
~~~~
![1583394715770](assets/1583394715770.png)
~~~~shell
# 200机器准备资源配置清单
~]# mkdir /data/k8s-yaml/kube-state-metrics
~]# cd /data/k8s-yaml/kube-state-metrics
kube-state-metrics]# vi rbac.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true"
name: kube-state-metrics
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true"
name: kube-state-metrics
rules:
- apiGroups:
- ""
resources:
- configmaps
- secrets
- nodes
- pods
- services
- resourcequotas
- replicationcontrollers
- limitranges
- persistentvolumeclaims
- persistentvolumes
- namespaces
- endpoints
verbs:
- list
- watch
- apiGroups:
- policy
resources:
- poddisruptionbudgets
verbs:
- list
- watch
- apiGroups:
- extensions
resources:
- daemonsets
- deployments
- replicasets
verbs:
- list
- watch
- apiGroups:
- apps
resources:
- statefulsets
verbs:
- list
- watch
- apiGroups:
- batch
resources:
- cronjobs
- jobs
verbs:
- list
- watch
- apiGroups:
- autoscaling
resources:
- horizontalpodautoscalers
verbs:
- list
- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true"
name: kube-state-metrics
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: kube-state-metrics
subjects:
- kind: ServiceAccount
name: kube-state-metrics
namespace: kube-system
kube-state-metrics]# vi dp.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
annotations:
deployment.kubernetes.io/revision: "2"
labels:
grafanak8sapp: "true"
app: kube-state-metrics
name: kube-state-metrics
namespace: kube-system
spec:
selector:
matchLabels:
grafanak8sapp: "true"
app: kube-state-metrics
strategy:
rollingUpdate:
maxSurge: 25%
maxUnavailable: 25%
type: RollingUpdate
template:
metadata:
labels:
grafanak8sapp: "true"
app: kube-state-metrics
spec:
containers:
- name: kube-state-metrics
image: harbor.od.com/public/kube-state-metrics:v1.5.0
imagePullPolicy: IfNotPresent
ports:
- containerPort: 8080
name: http-metrics
protocol: TCP
readinessProbe:
failureThreshold: 3
httpGet:
path: /healthz
port: 8080
scheme: HTTP
initialDelaySeconds: 5
periodSeconds: 10
successThreshold: 1
timeoutSeconds: 5
serviceAccountName: kube-state-metrics
~~~~
![1583396103539](assets/1583396103539.png)
~~~~
# 应用清单22机器
~]# kubectl apply -f http://k8s-yaml.od.com/kube-state-metrics/rbac.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/kube-state-metrics/dp.yaml
# 查询kube-metrics是否正常启动curl哪个是在dashboard里看到的
~]# curl 172.7.21.8:8080/healthz
# out:ok
# 该命令是查看取出来的信息
~]# curl 172.7.21.8:8080/metric
~~~~
![1583396394541](assets/1583396394541.png)
![1583396300678](assets/1583396300678.png)
完成
### 交付node-exporter
> **WHAT:** 用来监控运算节点上的宿主机的资源信息,需要部署到所有运算节点
[node-exporter官方dockerhub地址](https://hub.docker.com/r/prom/node-exporter)
~~~
# 200机器下载镜像并准备资源配置清单
~]# docker pull prom/node-exporter:v0.15.0
~]# docker images|grep node-exporter
~]# docker tag 12d51ffa2b22 harbor.od.com/public/node-exporter:v0.15.0
~]# docker push harbor.od.com/public/node-exporter:v0.15.0
~]# mkdir /data/k8s-yaml/node-exporter/
~]# cd /data/k8s-yaml/node-exporter/
node-exporter]# vi ds.yaml
kind: DaemonSet
apiVersion: extensions/v1beta1
metadata:
name: node-exporter
namespace: kube-system
labels:
daemon: "node-exporter"
grafanak8sapp: "true"
spec:
selector:
matchLabels:
daemon: "node-exporter"
grafanak8sapp: "true"
template:
metadata:
name: node-exporter
labels:
daemon: "node-exporter"
grafanak8sapp: "true"
spec:
volumes:
- name: proc
hostPath:
path: /proc
type: ""
- name: sys
hostPath:
path: /sys
type: ""
containers:
- name: node-exporter
image: harbor.od.com/public/node-exporter:v0.15.0
imagePullPolicy: IfNotPresent
args:
- --path.procfs=/host_proc
- --path.sysfs=/host_sys
ports:
- name: node-exporter
hostPort: 9100
containerPort: 9100
protocol: TCP
volumeMounts:
- name: sys
readOnly: true
mountPath: /host_sys
- name: proc
readOnly: true
mountPath: /host_proc
hostNetwork: true
~~~
~~~
# 22机器应用
# 先看一下宿主机有没有9100端口发现什么都没有
~]# netstat -luntp|grep 9100
~]# kubectl apply -f http://k8s-yaml.od.com/node-exporter/ds.yaml
# 创建完再看端口可能启动的慢些我是刷了3次才有
~]# netstat -luntp|grep 9100
~]# curl localhost:9100
# 该命令是查看取出来的信息
~]# curl localhost:9100/metrics
~~~
![1583396713104](assets/1583396713104.png)
![1583396743927](assets/1583396743927.png)
完成
### 交付cadvisor
> **WHAT** 用来监控容器内部使用资源的信息
[cadvisor官方dockerhub镜像](https://hub.docker.com/r/google/cadvisor/tags)
~~~
# 200机器下载镜像
~]# docker pull google/cadvisor:v0.28.3
~]# docker images|grep cadvisor
~]# docker tag 75f88e3ec33 harbor.od.com/public/cadvisor:v0.28.3
~]# docker push harbor.od.com/public/cadvisor:v0.28.3
~]# mkdir /data/k8s-yaml/cadvisor/
~]# cd /data/k8s-yaml/cadvisor/
cadvisor]# vi ds.yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: cadvisor
namespace: kube-system
labels:
app: cadvisor
spec:
selector:
matchLabels:
name: cadvisor
template:
metadata:
labels:
name: cadvisor
spec:
hostNetwork: true
tolerations:
- key: node-role.kubernetes.io/master
effect: NoExecute
containers:
- name: cadvisor
image: harbor.od.com/public/cadvisor:v0.28.3
imagePullPolicy: IfNotPresent
volumeMounts:
- name: rootfs
mountPath: /rootfs
readOnly: true
- name: var-run
mountPath: /var/run
- name: sys
mountPath: /sys
readOnly: true
- name: docker
mountPath: /var/lib/docker
readOnly: true
ports:
- name: http
containerPort: 4194
protocol: TCP
readinessProbe:
tcpSocket:
port: 4194
initialDelaySeconds: 5
periodSeconds: 10
args:
- --housekeeping_interval=10s
- --port=4194
terminationGracePeriodSeconds: 30
volumes:
- name: rootfs
hostPath:
path: /
- name: var-run
hostPath:
path: /var/run
- name: sys
hostPath:
path: /sys
- name: docker
hostPath:
path: /data/docker
~~~
![1583457963534](assets/1583457963534.png)
> 此时我们看到大多数节点都运行在21机器上我们人为的让pod调度到22机器当然即使你的大多数节点都运行在22机器上也没关系
[^tolerations]: 可人为影响调度策略的方法。为什么需要它kube-schedule是主控节点的策略有预选节点和优选节点的策略但往往生活中调度策略可能不是我们想要的。
[^tolerations-key]: 是否调度的是某节点,污点可以有多个
[^tolerations-effect-NoExecute]: 容忍NoExecute其它的不容忍NoSchedule等即如过节点上的污点不是NoExecute就不调度到该节点上如果是就可以调度。反之如果是NoSchedule那么节点上的污点如果是NoSchedule则可以容器如果不是则不可以。
> 可人为影响K8S调度策略的三种方法
>
> - 污点、容忍方法:
> - 污点运算节点node上的污点先在运算节点上打标签等 kubectl taint nodes node1 key1=value1:NoSchedule污点可以有多个
> - 容忍度pod是否能够容忍污点
> - 参考[kubernetes官网](https:kubernetes.io/zh/docs/concepts/configuration/taint-and-toleration/)
> - nodeName让Pod运行再指定的node上
> - nodeSelector通过标签选择器让Pod运行再指定的一类node上
~~~
# 给21机器打个污点22机器
~]# kubectl taint node hdss7-21.host.com node-role.kubernetes.io/master=master:NoSchedule
~~~
![1581470696125](assets/1581470696125.png)
![1583458119938](assets/1583458119938.png)
~~~
# 21/22两个机器修改软连接
~]# mount -o remount,rw /sys/fs/cgroup/
~]# ln -s /sys/fs/cgroup/cpu,cpuacct /sys/fs/cgroup/cpuacct,cpu
~]# ls -l /sys/fs/cgroup/
~~~
> **mount -o remount, rw /sys/fs/cgroup**:重新以可读可写的方式挂载为已经挂载/sys/fs/cgroup
>
> **ln -s**:创建对应的软链接
>
> **ls -l**:显示不隐藏的文件与文件夹的详细信息
![1583458181722](assets/1583458181722.png)
~~~
# 22机器应用资源清单
~]# kubectl apply -f http://k8s-yaml.od.com/cadvisor/ds.yaml
~]# kubectl get pods -n kube-system -o wide
~~~
只有22机器上有跟我们预期一样
![1583458264404](assets/1583458264404.png)
~~~
# 21机器我们删掉污点
~]# kubectl taint node hdss7-21.host.com node-role.kubernetes.io/master-
# out: node/hdss7-21.host.com untainted
~~~
看dashboard污点已经没了
![1583458299094](assets/1583458299094.png)
在去Pods看污点没了pod就自动起来了
![1583458316885](assets/1583458316885.png)
完成
再修改下
![1583458394302](assets/1583458394302.png)
### 交付blackbox-exporter
> **WHAT**:监控业务容器存活性
~~~
# 200机器下载镜像
~]# docker pull prom/blackbox-exporter:v0.15.1
~]# docker images|grep blackbox-exporter
~]# docker tag 81b70b6158be harbor.od.com/public/blackbox-exporter:v0.15.1
~]# docker push harbor.od.com/public/blackbox-exporter:v0.15.1
~]# mkdir /data/k8s-yaml/blackbox-exporter
~]# cd /data/k8s-yaml/blackbox-exporter
blackbox-exporter]# vi cm.yaml
apiVersion: v1
kind: ConfigMap
metadata:
labels:
app: blackbox-exporter
name: blackbox-exporter
namespace: kube-system
data:
blackbox.yml: |-
modules:
http_2xx:
prober: http
timeout: 2s
http:
valid_http_versions: ["HTTP/1.1", "HTTP/2"]
valid_status_codes: [200,301,302]
method: GET
preferred_ip_protocol: "ip4"
tcp_connect:
prober: tcp
timeout: 2s
blackbox-exporter]# vi dp.yaml
kind: Deployment
apiVersion: extensions/v1beta1
metadata:
name: blackbox-exporter
namespace: kube-system
labels:
app: blackbox-exporter
annotations:
deployment.kubernetes.io/revision: 1
spec:
replicas: 1
selector:
matchLabels:
app: blackbox-exporter
template:
metadata:
labels:
app: blackbox-exporter
spec:
volumes:
- name: config
configMap:
name: blackbox-exporter
defaultMode: 420
containers:
- name: blackbox-exporter
image: harbor.od.com/public/blackbox-exporter:v0.15.1
imagePullPolicy: IfNotPresent
args:
- --config.file=/etc/blackbox_exporter/blackbox.yml
- --log.level=info
- --web.listen-address=:9115
ports:
- name: blackbox-port
containerPort: 9115
protocol: TCP
resources:
limits:
cpu: 200m
memory: 256Mi
requests:
cpu: 100m
memory: 50Mi
volumeMounts:
- name: config
mountPath: /etc/blackbox_exporter
readinessProbe:
tcpSocket:
port: 9115
initialDelaySeconds: 5
timeoutSeconds: 5
periodSeconds: 10
successThreshold: 1
failureThreshold: 3
blackbox-exporter]# vi svc.yaml
kind: Service
apiVersion: v1
metadata:
name: blackbox-exporter
namespace: kube-system
spec:
selector:
app: blackbox-exporter
ports:
- name: blackbox-port
protocol: TCP
port: 9115
blackbox-exporter]# vi ingress.yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: blackbox-exporter
namespace: kube-system
spec:
rules:
- host: blackbox.od.com
http:
paths:
- path: /
backend:
serviceName: blackbox-exporter
servicePort: blackbox-port
~~~
![1583460099035](assets/1583460099035.png)
~~~
# 11机器解析域名
~]# vi /var/named/od.com.zone
serial 前滚一位
blackbox A 10.4.7.10
~]# systemctl restart named
# 22机器
~]# dig -t A blackbox.od.com @192.168.0.2 +short
# out: 10.4.7.10
~~~
![1583460226033](assets/1583460226033.png)
~~~
# 22机器应用
~]# kubectl apply -f http://k8s-yaml.od.com/blackbox-exporter/cm.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/blackbox-exporter/dp.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/blackbox-exporter/svc.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/blackbox-exporter/ingress.yaml
~~~
![1583460413279](assets/1583460413279.png)
[blackbox.od.com](blackbox.od.com)
![1583460433145](assets/1583460433145.png)
完成
### 安装部署Prometheus-server
> **WHAT**服务核心组件通过pull metrics从 Exporter 拉取和存储监控数据,并提供一套灵活的查询语言PromQL
[prometheus-server官网docker地址](https://hub.docker.com/r/prom/prometheus)
~~~~
# 200机器准备镜像、资源清单
~]# docker pull prom/prometheus:v2.14.0
~]# docker images|grep prometheus
~]# docker tag 7317640d555e harbor.od.com/infra/prometheus:v2.14.0
~]# docker push harbor.od.com/infra/prometheus:v2.14.0
~]# mkdir /data/k8s-yaml/prometheus
~]# cd /data/k8s-yaml/prometheus
prometheus]# vi rbac.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true"
name: prometheus
namespace: infra
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true"
name: prometheus
rules:
- apiGroups:
- ""
resources:
- nodes
- nodes/metrics
- services
- endpoints
- pods
verbs:
- get
- list
- watch
- apiGroups:
- ""
resources:
- configmaps
verbs:
- get
- nonResourceURLs:
- /metrics
verbs:
- get
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true"
name: prometheus
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: prometheus
subjects:
- kind: ServiceAccount
name: prometheus
namespace: infra
prometheus]# vi dp.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
annotations:
deployment.kubernetes.io/revision: "5"
labels:
name: prometheus
name: prometheus
namespace: infra
spec:
progressDeadlineSeconds: 600
replicas: 1
revisionHistoryLimit: 7
selector:
matchLabels:
app: prometheus
strategy:
rollingUpdate:
maxSurge: 1
maxUnavailable: 1
type: RollingUpdate
template:
metadata:
labels:
app: prometheus
spec:
containers:
- name: prometheus
image: harbor.od.com/infra/prometheus:v2.14.0
imagePullPolicy: IfNotPresent
command:
- /bin/prometheus
args:
- --config.file=/data/etc/prometheus.yml
- --storage.tsdb.path=/data/prom-db
- --storage.tsdb.min-block-duration=10m
- --storage.tsdb.retention=72h
ports:
- containerPort: 9090
protocol: TCP
volumeMounts:
- mountPath: /data
name: data
resources:
requests:
cpu: "1000m"
memory: "1.5Gi"
limits:
cpu: "2000m"
memory: "3Gi"
imagePullSecrets:
- name: harbor
securityContext:
runAsUser: 0
serviceAccountName: prometheus
volumes:
- name: data
nfs:
server: hdss7-200
path: /data/nfs-volume/prometheus
prometheus]# vi svc.yaml
apiVersion: v1
kind: Service
metadata:
name: prometheus
namespace: infra
spec:
ports:
- port: 9090
protocol: TCP
targetPort: 9090
selector:
app: prometheus
prometheus]# vi ingress.yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
annotations:
kubernetes.io/ingress.class: traefik
name: prometheus
namespace: infra
spec:
rules:
- host: prometheus.od.com
http:
paths:
- path: /
backend:
serviceName: prometheus
servicePort: 9090
# 准备prometheus的配置文件
prometheus]# mkdir /data/nfs-volume/prometheus
prometheus]# cd /data/nfs-volume/prometheus
prometheus]# mkdir {etc,prom-db}
prometheus]# cd etc/
etc]# cp /opt/certs/ca.pem .
etc]# cp -a /opt/certs/client.pem .
etc]# cp -a /opt/certs/client-key.pem .
etc]# prometheus.yml
global:
scrape_interval: 15s
evaluation_interval: 15s
scrape_configs:
- job_name: 'etcd'
tls_config:
ca_file: /data/etc/ca.pem
cert_file: /data/etc/client.pem
key_file: /data/etc/client-key.pem
scheme: https
static_configs:
- targets:
- '10.4.7.12:2379'
- '10.4.7.21:2379'
- '10.4.7.22:2379'
- job_name: 'kubernetes-apiservers'
kubernetes_sd_configs:
- role: endpoints
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
action: keep
regex: default;kubernetes;https
- job_name: 'kubernetes-pods'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
- job_name: 'kubernetes-kubelet'
kubernetes_sd_configs:
- role: node
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __address__
replacement: ${1}:10255
- job_name: 'kubernetes-cadvisor'
kubernetes_sd_configs:
- role: node
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __address__
replacement: ${1}:4194
- job_name: 'kubernetes-kube-state'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
- source_labels: [__meta_kubernetes_pod_label_grafanak8sapp]
regex: .*true.*
action: keep
- source_labels: ['__meta_kubernetes_pod_label_daemon', '__meta_kubernetes_pod_node_name']
regex: 'node-exporter;(.*)'
action: replace
target_label: nodename
- job_name: 'blackbox_http_pod_probe'
metrics_path: /probe
kubernetes_sd_configs:
- role: pod
params:
module: [http_2xx]
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_blackbox_scheme]
action: keep
regex: http
- source_labels: [__address__, __meta_kubernetes_pod_annotation_blackbox_port, __meta_kubernetes_pod_annotation_blackbox_path]
action: replace
regex: ([^:]+)(?::\d+)?;(\d+);(.+)
replacement: $1:$2$3
target_label: __param_target
- action: replace
target_label: __address__
replacement: blackbox-exporter.kube-system:9115
- source_labels: [__param_target]
target_label: instance
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
- job_name: 'blackbox_tcp_pod_probe'
metrics_path: /probe
kubernetes_sd_configs:
- role: pod
params:
module: [tcp_connect]
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_blackbox_scheme]
action: keep
regex: tcp
- source_labels: [__address__, __meta_kubernetes_pod_annotation_blackbox_port]
action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
target_label: __param_target
- action: replace
target_label: __address__
replacement: blackbox-exporter.kube-system:9115
- source_labels: [__param_target]
target_label: instance
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
- job_name: 'traefik'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scheme]
action: keep
regex: traefik
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
~~~~
> **cp -a**:在复制目录时使用,它保留链接、文件属性,并复制目录下的所有内容
![1583461823355](assets/1583461823355.png)
~~~
# 11机器 解析域名有ingress就有页面就需要解析
~]# vi /var/named/od.com.zone
serial 前滚一位
prometheus A 10.4.7.10
~]# systemctl restart named
~]# dig -t A prometheus.od.com @10.4.7.11 +short
# out:10.4.7.10
~~~
![1582704423890](assets/1582704423890.png)
~~~
# 22机器应用配置清单
~]# kubectl apply -f http://k8s-yaml.od.com/prometheus/rbac.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/prometheus/dp.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/prometheus/svc.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/prometheus/ingress.yaml
~~~
![1583461941453](assets/1583461941453.png)
![1583462134250](assets/1583462134250.png)
[prometheus.od.com](prometheus.od.com)
> 这就是Prometheus自带的UI页面现在你就知道为什么我们需要Grafana来替代了如果你还不清楚等下看Grafana的页面你就知道了
![1583462164465](assets/1583462164465.png)
![1583462217169](assets/1583462217169.png)
完成
### 配置Prometheus监控业务容器
##### 先配置traefik
![1583462282296](assets/1583462282296.png)
~~~
# Edit a Daemon Set添加以下内容记得给上面加逗号:
"annotations": {
"prometheus_io_scheme": "traefik",
"prometheus_io_path": "/metrics",
"prometheus_io_port": "8080"
}
# 直接加进去update会自动对齐
~~~
![1583462379871](assets/1583462379871.png)
删掉两个对应的pod让它重启
![1583462451073](assets/1583462451073.png)
~~~
# 22机器查看下如果起不来就用命令行的方式强制删除
~]# kubectl get pods -n kube-system
~]# kubectl delete pods traefik-ingress-g26kw -n kube-system --force --grace-period=0
~~~
![1583462566364](assets/1583462566364.png)
启动成功后去Prometheus查看
刷新后可以看到是traefik2/2已经有了
![1583462600531](assets/1583462600531.png)
完成
##### blackbox
我们起一个dubbo-service之前我们最后做的是Apollo的版本现在我们的Apollo已经关了因为消耗资源现在需要起更早之前不是Apollo的版本。
我们去harbor里面找
![1583465190219](assets/1583465190219.png)
> 我的Apollo的版本可能比你的多一个不用在意那是做实验弄的
修改版本信息
![1583466214230](assets/1583466214230.png)
![1583466251914](assets/1583466251914.png)
在把scale改成1
![1583466284890](assets/1583466284890.png)
查看POD的LOGS日志
![1583466310189](assets/1583466310189.png)
翻页查看,已经启动
![1583466328146](assets/1583466328146.png)
如何监控存活性,只需要修改配置
![1584699708597](assets/1584699708597.png)
~~~
# Edit a DeploymentTCP添加以下内容
"annotations": {
"blackbox_port": "20880",
"blackbox_scheme": "tcp"
}
# 直接加进去update会自动对齐
~~~
![1583466938931](assets/1583466938931.png)
UPDATE后已经running起来了
![1583467301614](assets/1583467301614.png)
[prometheus.od.com](prometheus.od.com)刷新,自动发现业务
![1583466979716](assets/1583466979716.png)
[blackbox.od.com](blackbox.od.com) 刷新
![1583467331128](assets/1583467331128.png)
同样的我们把dubbo-consumer也弄进来
先去harbor找一个不是Apollo的版本为什么要用不是Apollo的版本前面已经说了
![1583503611435](assets/1583503611435.png)
修改版本信息并添加annotations
~~~
# Edit a Deployment(http),添加以下内容,记得前面的逗号
"annotations":{
"blackbox_path": "/hello?name=health",
"blackbox_port": "8080",
"blackbox_scheme": "http"
}
# 直接加进去update会自动对齐
~~~
![1583503670313](assets/1583503670313.png)
![1583504095794](assets/1583504095794.png)
UPDATE后把scale改成1
![1583503796291](assets/1583503796291.png)
确保起来了
![1583503811855](assets/1583503811855.png)
![1583503829457](assets/1583503829457.png)
[prometheus.od.com](prometheus.od.com)刷新,自动发现业务
![1583503935815](assets/1583503935815.png)
[blackbox.od.com](blackbox.od.com) 刷新
![1583504112078](assets/1583504112078.png)
### 安装部署配置Grafana
> **WHAT**:美观、强大的可视化监控指标展示工具
>
> **WHY**用来代替prometheus原生UI界面
~~~
# 200机器准备镜像、资源配置清单
~]# docker pull grafana/grafana:5.4.2
~]# docker images|grep grafana
~]# docker tag 6f18ddf9e552 harbor.od.com/infra/grafana:v5.4.2
~]# docker push harbor.od.com/infra/grafana:v5.4.2
~]# mkdir /data/k8s-yaml/grafana/ /data/nfs-volume/grafana
~]# cd /data/k8s-yaml/grafana/
grafana]# vi rbac.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true"
name: grafana
rules:
- apiGroups:
- "*"
resources:
- namespaces
- deployments
- pods
verbs:
- get
- list
- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true"
name: grafana
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: grafana
subjects:
- kind: User
name: k8s-node
grafana]# vi dp.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
labels:
app: grafana
name: grafana
name: grafana
namespace: infra
spec:
progressDeadlineSeconds: 600
replicas: 1
revisionHistoryLimit: 7
selector:
matchLabels:
name: grafana
strategy:
rollingUpdate:
maxSurge: 1
maxUnavailable: 1
type: RollingUpdate
template:
metadata:
labels:
app: grafana
name: grafana
spec:
containers:
- name: grafana
image: harbor.od.com/infra/grafana:v5.4.2
imagePullPolicy: IfNotPresent
ports:
- containerPort: 3000
protocol: TCP
volumeMounts:
- mountPath: /var/lib/grafana
name: data
imagePullSecrets:
- name: harbor
securityContext:
runAsUser: 0
volumes:
- nfs:
server: hdss7-200
path: /data/nfs-volume/grafana
name: data
grafana]# vi svc.yaml
apiVersion: v1
kind: Service
metadata:
name: grafana
namespace: infra
spec:
ports:
- port: 3000
protocol: TCP
targetPort: 3000
selector:
app: grafana
grafana]# vi ingress.yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: grafana
namespace: infra
spec:
rules:
- host: grafana.od.com
http:
paths:
- path: /
backend:
serviceName: grafana
servicePort: 3000
~~~
![1583504719781](assets/1583504719781.png)
~~~
# 11机器解析域名:
~]# vi /var/named/od.com.zone
serial 前滚一位
grafana A 10.4.7.10
~]# systemctl restart named
~]# ping grafana.od.com
~~~
![1582705048800](assets/1582705048800.png)
~~~~
# 22机器应用配置清单
~]# kubectl apply -f http://k8s-yaml.od.com/grafana/rbac.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/grafana/dp.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/grafana/svc.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/grafana/ingress.yaml
~~~~
![1583504865941](assets/1583504865941.png)
[grafana.od.com](grafana.od.com)
默认账户和密码都是admin
修改密码admin123
![1583504898029](assets/1583504898029.png)
修改配置,修改如下图
![1583505029816](assets/1583505029816.png)
##### 装插件
进入容器
![1583505097409](assets/1583505097409.png)
~~~
# 第一个kubenetes App
grafana# grafana-cli plugins install grafana-kubernetes-app
# 第二个Clock Pannel
grafana# grafana-cli plugins install grafana-clock-panel
# 第三个Pie Chart
grafana# grafana-cli plugins install grafana-piechart-panel
# 第四个D3Gauge
grafana# grafana-cli plugins install briangann-gauge-panel
# 第五个Discrete
grafana# grafana-cli plugins install natel-discrete-panel
~~~
![1583505305939](assets/1583505305939.png)
装完后可以在200机器查看
~~~
# 200机器
cd /data/nfs-volume/grafana/plugins/
plugins]# ll
~~~
![1583505462177](assets/1583505462177.png)
删掉让它重启
![1583505490948](assets/1583505490948.png)
重启完成后
查看[grafana.od.com](grafana.od.com)刚刚安装的5个插件都在里面了记得检查是否在里面了
![1583505547061](assets/1583505547061.png)
##### 添加数据源Add data source
![1583505581557](assets/1583505581557.png)
![1583505600031](assets/1583505600031.png)
~~~
# 填入参数:
URL:http://prometheus.od.com
TLS Client Auth✔ With CA Cert✔
~~~
![1583505840252](assets/1583505840252.png)
~~~
# 填入参数对应的pem参数
# 200机器拿ca等
~]# cat /opt/certs/ca.pem
~]# cat /opt/certs/client.pem
~]# cat /opt/certs/client-key.pem
~~~
![1583505713033](assets/1583505713033.png)
![1583505856093](assets/1583505856093.png)
保存
然后我们去配置plugins里面的kubernetes
![1583505923109](assets/1583505923109.png)
![1583505938700](assets/1583505938700.png)
右侧就多了个按钮,点击进去
![1583505969865](assets/1583505969865.png)
~~~
# 按参数填入:
Name:myk8s
URL:https://10.4.7.10:7443
Access:Server
TLS Client Auth✔ With CA Cert✔
~~~
![1583506058483](assets/1583506058483.png)
~~~
# 填入参数:
# 200机器拿ca等
~]# cat /opt/certs/ca.pem
~]# cat /opt/certs/client.pem
~]# cat /opt/certs/client-key.pem
~~~
![1583506131529](assets/1583506131529.png)
save后再点击右侧框的图标并点击Name
![1583506163546](assets/1583506163546.png)
可能抓取数据的时间会稍微慢些(两分钟左右)
![1583506184293](assets/1583506184293.png)
![1583506503213](assets/1583506503213.png)
点击右上角的K8s Cluster选择你要看的东西
![1583506545308](assets/1583506545308.png)
由于K8s Container里面数据不全如下图
![1583506559069](assets/1583506559069.png)
我们改下把Cluster删了
![1583506631392](assets/1583506631392.png)
![1583506645982](assets/1583506645982.png)
container也删了
![1583506675876](assets/1583506675876.png)
deployment也删了
![1583506695618](assets/1583506695618.png)
node也删了
![1583506709705](assets/1583506709705.png)
![1583506730713](assets/1583506730713.png)
![1583506744138](assets/1583506744138.png)
把我给你准备的dashboard的json文件import进来
![1583543092886](assets/1583543092886.png)
![1583543584476](assets/1583543584476.png)
![1583543602130](assets/1583543602130.png)
用同样的方法把node、deployment、cluster、container这4个分别import进来
![1583543698727](assets/1583543698727.png)
可以都看一下,已经正常了
然后把etcd、generic、traefik也import进来
![1583543809740](assets/1583543809740.png)
![1583543831830](assets/1583543831830.png)
还有另外一种import的方法使用官网的
[grafana官网](https://grafana.com/grafana/dashboards)
找一个别人写好的点进去
![1584241883144](assets/1584241883144.png)
这个编号可以直接用
![1584241903882](assets/1584241903882.png)
如下图我们装blackbox的编号是9965
![1584242072703](assets/1584242072703.png)
![1584242093513](assets/1584242093513.png)
把名字和Prometheus修改一下
![1584242164621](assets/1584242164621.png)
或者你也可以用我上传的我用的是7587
![1583543931644](assets/1583543931644.png)
你可以两个都用,自己做对比,都留着也可以,就是占一些资源
JMX
![1583544009027](assets/1583544009027.png)
这个里面还什么都没有
![1583544017606](assets/1583544017606.png)
#### 把Dubbo微服务数据弄到Grafana
dubbo-service
![1583544062372](assets/1583544062372.png)
~~~
# Edit a Daemon Set添加以下内容注意给上一行加逗号
"prometheus_io_scrape": "true",
"prometheus_io_port": "12346",
"prometheus_io_path": "/"
# 直接加进去update会自动对齐
~~~
![1583544144136](assets/1583544144136.png)
dubbo-consumer
![1583544157268](assets/1583544157268.png)
~~~
# Edit a Daemon Set添加以下内容注意给上一行加逗号
"prometheus_io_scrape": "true",
"prometheus_io_port": "12346",
"prometheus_io_path": "/"
# 直接加进去update会自动对齐
~~~
![1583544192459](assets/1583544192459.png)
刷新JMX可能有点慢我等了1分钟才出来service我机器不行了
![1583544446817](assets/1583544446817.png)
完成
> 此时你可以感受到Grafana明显比K8S自带的UI界面更加人性化
### 安装部署alertmanager
> **WHAT** 从 Prometheus server 端接收到 alerts 后会进行去除重复数据分组并路由到对方的接受方式发出报警。常见的接收方式有电子邮件pagerduty 等。
>
> **WHY**:使得系统的警告随时让我们知道
~~~
# 200机器准备镜像、资源清单
~]# mkdir /data/k8s-yaml/alertmanager
~]# cd /data/k8s-yaml/alertmanager
alertmanager]# docker pull docker.io/prom/alertmanager:v0.14.0
# 注意这里你如果不用14版本可能会报错
alertmanager]# docker images|grep alert
alertmanager]# docker tag 23744b2d645c harbor.od.com/infra/alertmanager:v0.14.0
alertmanager]# docker push harbor.od.com/infra/alertmanager:v0.14.0
# 注意下面记得修改成你自己的邮箱等信息,还有中文注释可以删掉
alertmanager]# vi cm.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: alertmanager-config
namespace: infra
data:
config.yml: |-
global:
# 在没有报警的情况下声明为已解决的时间
resolve_timeout: 5m
# 配置邮件发送信息
smtp_smarthost: 'smtp.163.com:25'
smtp_from: 'ben909336740@163.com'
smtp_auth_username: 'ben909336740@163.com'
smtp_auth_password: 'xxxxxx'
smtp_require_tls: false
# 所有报警信息进入后的根路由,用来设置报警的分发策略
route:
# 这里的标签列表是接收到报警信息后的重新分组标签,例如,接收到的报警信息里面有许多具有 cluster=A 和 alertname=LatncyHigh 这样的标签的报警信息将会批量被聚合到一个分组里面
group_by: ['alertname', 'cluster']
# 当一个新的报警分组被创建后需要等待至少group_wait时间来初始化通知这种方式可以确保您能有足够的时间为同一分组来获取多个警报然后一起触发这个报警信息。
group_wait: 30s
# 当第一个报警发送后,等待'group_interval'时间来发送新的一组报警信息。
group_interval: 5m
# 如果一个报警信息已经发送成功了,等待'repeat_interval'时间来重新发送他们
repeat_interval: 5m
# 默认的receiver如果一个报警没有被一个route匹配则发送给默认的接收器
receiver: default
receivers:
- name: 'default'
email_configs:
- to: '909336740@qq.com'
send_resolved: true
alertmanager]# vi dp.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: alertmanager
namespace: infra
spec:
replicas: 1
selector:
matchLabels:
app: alertmanager
template:
metadata:
labels:
app: alertmanager
spec:
containers:
- name: alertmanager
image: harbor.od.com/infra/alertmanager:v0.14.0
args:
- "--config.file=/etc/alertmanager/config.yml"
- "--storage.path=/alertmanager"
ports:
- name: alertmanager
containerPort: 9093
volumeMounts:
- name: alertmanager-cm
mountPath: /etc/alertmanager
volumes:
- name: alertmanager-cm
configMap:
name: alertmanager-config
imagePullSecrets:
- name: harbor
alertmanager]# vi svc.yaml
apiVersion: v1
kind: Service
metadata:
name: alertmanager
namespace: infra
spec:
selector:
app: alertmanager
ports:
- port: 80
targetPort: 9093
~~~
![1583547933312](assets/1583547933312.png)
~~~
# 22机器应用清单
~]# kubectl apply -f http://k8s-yaml.od.com/alertmanager/cm.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/alertmanager/dp.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/alertmanager/svc.yaml
~~~
![1583545326722](assets/1583545326722.png)
![1583545352951](assets/1583545352951.png)
~~~
# 200机器配置报警规则
~]# vi /data/nfs-volume/prometheus/etc/rules.yml
groups:
- name: hostStatsAlert
rules:
- alert: hostCpuUsageAlert
expr: sum(avg without (cpu)(irate(node_cpu{mode!='idle'}[5m]))) by (instance) > 0.85
for: 5m
labels:
severity: warning
annotations:
summary: "{{ $labels.instance }} CPU usage above 85% (current value: {{ $value }}%)"
- alert: hostMemUsageAlert
expr: (node_memory_MemTotal - node_memory_MemAvailable)/node_memory_MemTotal > 0.85
for: 5m
labels:
severity: warning
annotations:
summary: "{{ $labels.instance }} MEM usage above 85% (current value: {{ $value }}%)"
- alert: OutOfInodes
expr: node_filesystem_free{fstype="overlay",mountpoint ="/"} / node_filesystem_size{fstype="overlay",mountpoint ="/"} * 100 < 10
for: 5m
labels:
severity: warning
annotations:
summary: "Out of inodes (instance {{ $labels.instance }})"
description: "Disk is almost running out of available inodes (< 10% left) (current value: {{ $value }})"
- alert: OutOfDiskSpace
expr: node_filesystem_free{fstype="overlay",mountpoint ="/rootfs"} / node_filesystem_size{fstype="overlay",mountpoint ="/rootfs"} * 100 < 10
for: 5m
labels:
severity: warning
annotations:
summary: "Out of disk space (instance {{ $labels.instance }})"
description: "Disk is almost full (< 10% left) (current value: {{ $value }})"
- alert: UnusualNetworkThroughputIn
expr: sum by (instance) (irate(node_network_receive_bytes[2m])) / 1024 / 1024 > 100
for: 5m
labels:
severity: warning
annotations:
summary: "Unusual network throughput in (instance {{ $labels.instance }})"
description: "Host network interfaces are probably receiving too much data (> 100 MB/s) (current value: {{ $value }})"
- alert: UnusualNetworkThroughputOut
expr: sum by (instance) (irate(node_network_transmit_bytes[2m])) / 1024 / 1024 > 100
for: 5m
labels:
severity: warning
annotations:
summary: "Unusual network throughput out (instance {{ $labels.instance }})"
description: "Host network interfaces are probably sending too much data (> 100 MB/s) (current value: {{ $value }})"
- alert: UnusualDiskReadRate
expr: sum by (instance) (irate(node_disk_bytes_read[2m])) / 1024 / 1024 > 50
for: 5m
labels:
severity: warning
annotations:
summary: "Unusual disk read rate (instance {{ $labels.instance }})"
description: "Disk is probably reading too much data (> 50 MB/s) (current value: {{ $value }})"
- alert: UnusualDiskWriteRate
expr: sum by (instance) (irate(node_disk_bytes_written[2m])) / 1024 / 1024 > 50
for: 5m
labels:
severity: warning
annotations:
summary: "Unusual disk write rate (instance {{ $labels.instance }})"
description: "Disk is probably writing too much data (> 50 MB/s) (current value: {{ $value }})"
- alert: UnusualDiskReadLatency
expr: rate(node_disk_read_time_ms[1m]) / rate(node_disk_reads_completed[1m]) > 100
for: 5m
labels:
severity: warning
annotations:
summary: "Unusual disk read latency (instance {{ $labels.instance }})"
description: "Disk latency is growing (read operations > 100ms) (current value: {{ $value }})"
- alert: UnusualDiskWriteLatency
expr: rate(node_disk_write_time_ms[1m]) / rate(node_disk_writes_completedl[1m]) > 100
for: 5m
labels:
severity: warning
annotations:
summary: "Unusual disk write latency (instance {{ $labels.instance }})"
description: "Disk latency is growing (write operations > 100ms) (current value: {{ $value }})"
- name: http_status
rules:
- alert: ProbeFailed
expr: probe_success == 0
for: 1m
labels:
severity: error
annotations:
summary: "Probe failed (instance {{ $labels.instance }})"
description: "Probe failed (current value: {{ $value }})"
- alert: StatusCode
expr: probe_http_status_code <= 199 OR probe_http_status_code >= 400
for: 1m
labels:
severity: error
annotations:
summary: "Status Code (instance {{ $labels.instance }})"
description: "HTTP status code is not 200-399 (current value: {{ $value }})"
- alert: SslCertificateWillExpireSoon
expr: probe_ssl_earliest_cert_expiry - time() < 86400 * 30
for: 5m
labels:
severity: warning
annotations:
summary: "SSL certificate will expire soon (instance {{ $labels.instance }})"
description: "SSL certificate expires in 30 days (current value: {{ $value }})"
- alert: SslCertificateHasExpired
expr: probe_ssl_earliest_cert_expiry - time() <= 0
for: 5m
labels:
severity: error
annotations:
summary: "SSL certificate has expired (instance {{ $labels.instance }})"
description: "SSL certificate has expired already (current value: {{ $value }})"
- alert: BlackboxSlowPing
expr: probe_icmp_duration_seconds > 2
for: 5m
labels:
severity: warning
annotations:
summary: "Blackbox slow ping (instance {{ $labels.instance }})"
description: "Blackbox ping took more than 2s (current value: {{ $value }})"
- alert: BlackboxSlowRequests
expr: probe_http_duration_seconds > 2
for: 5m
labels:
severity: warning
annotations:
summary: "Blackbox slow requests (instance {{ $labels.instance }})"
description: "Blackbox request took more than 2s (current value: {{ $value }})"
- alert: PodCpuUsagePercent
expr: sum(sum(label_replace(irate(container_cpu_usage_seconds_total[1m]),"pod","$1","container_label_io_kubernetes_pod_name", "(.*)"))by(pod) / on(pod) group_right kube_pod_container_resource_limits_cpu_cores *100 )by(container,namespace,node,pod,severity) > 80
for: 5m
labels:
severity: warning
annotations:
summary: "Pod cpu usage percent has exceeded 80% (current value: {{ $value }}%)"
# 在最后面添加如下内容
~]# vi /data/nfs-volume/prometheus/etc/prometheus.yml
alerting:
alertmanagers:
- static_configs:
- targets: ["alertmanager"]
rule_files:
- "/data/etc/rules.yml"
~~~
> ![1583545590235](assets/1583545590235.png)
>
> **rules.yml文件**:这个文件就是报警规则
>
> 这时候可以重启Prometheus的pod但生产商因为Prometheus太庞大删掉容易拖垮集群所以我们用另外一种方法平滑加载Prometheus支持
~~~
# 21机器因为我们起的Prometheus是在21机器平滑加载:
~]# ps aux|grep prometheus
~]# kill -SIGHUP 1488
~~~
![1583545718137](assets/1583545718137.png)
![1583545762475](assets/1583545762475.png)
> 这时候报警规则就都有了
>
### 测试alertmanager报警功能
先把对应的两个邮箱的stmp都打开
![1583721318338](assets/1583721318338.png)
![1583721408460](assets/1583721408460.png)
我们测试一下把dubbo-service停了这样consumer就会报错
把service的scale改成0
![1583545840349](assets/1583545840349.png)
[blackbox.od.com](blackbox.od.com)查看已经failure了
![1583545937643](assets/1583545937643.png)
[prometheus.od.com.alerts](prometheus.od.com.alerts)查看,两个变红了(一开始是变黄)
![1583548102650](assets/1583548102650.png)
![1583545983131](assets/1583545983131.png)
这时候可以在163邮箱看到已发送的报警
![1583721856162](assets/1583721856162.png)
QQ邮箱收到报警
![1583721899076](assets/1583721899076.png)
完成service的scale记得改回1
> 关于rules.yml报警不能错报也不能漏报在实际应用中我们需要不断的修改rules的规则以来贴近我们公司的实际需求。
#### 资源不足时,可关闭部分非必要资源
~~~
# 22机器也可以用dashboard操作
~]# kubectl scale deployment grafana --replicas=0 -n infra
# out : deployment.extensions/grafana scaled
~]# kubectl scale deployment alertmanager --replicas=0 -n infra
# out : deployment.extensions/alertmanager scaled
~]# kubectl scale deployment prometheus --replicas=0 -n infra
# out : deployment.extensions/prometheus scaled
~~~
### 通过K8S部署dubbo微服务接入ELK架构
> **WHAT**ELK是三个开源软件的缩写分别是
>
> - E——ElasticSearch分布式搜索引擎提供搜集、分析、存储数据三大功能。
> - L——LogStash对日志的搜集、分析、过滤日志的工具支持大量的数据获取方式。
> - K——Kibana为 Logstash 和 ElasticSearch 提供的日志分析友好的 Web 界面,可以帮助汇总、分析和搜索重要数据日志。
> - 还有新增的FileBeat流式日志收集器轻量级的日志收集处理工具占用资源少适合于在各个服务器上搜集日志后传输给Logstash官方也推荐此工具用来替代部分原本Logstash的工作。[收集日子的多种方式及原理](https://github.com/ben1234560/k8s_PaaS/blob/master/%E5%8E%9F%E7%90%86%E5%8F%8A%E6%BA%90%E7%A0%81%E8%A7%A3%E6%9E%90/Kubernetes%E7%9B%B8%E5%85%B3%E7%94%9F%E6%80%81.md#%E6%97%A5%E5%BF%97%E6%94%B6%E9%9B%86%E4%B8%8E%E7%AE%A1%E7%90%86)
>
> **WHY** 随着容器编排的进行,业务容器在不断的被创建、摧毁、迁移、扩容缩容等,面对如此海量的数据,又分布在各个不同的地方,我们不可能用传统的方法登录到每台机器看,所以我们需要建立一套集中的方法。我们需要这样一套日志手机、分析的系统:
>
> - 收集——采集多种来源的日志数据(流式日志收集器)
> - 传输——稳定的把日志数据传输到中央系统(消息队列)
> - 存储——将日志以结构化数据的形式存储起来(搜索引擎)
> - 分析——支持方便的分析、检索等有GUI管理系统前端
> - 警告——提供错误报告,监控机制(监控工具)
>
> #### 这就是ELK
#### ELK Stack概述
![1581729929995](assets/1581729929995.png)
> **c1/c2**container容器的缩写
>
> **filebeat**收集业务容器的日志把c和filebeat放在一个pod里让他们一起跑这样耦合就紧了
>
> **kafka**:高吞吐量的[分布式](https://baike.baidu.com/item/%E5%88%86%E5%B8%83%E5%BC%8F/19276232)发布订阅消息系统它可以处理消费者在网站中的所有动作流数据。filebeat收集数据以Topic形式发布到kafka。
>
> **Topic**Kafka数据写入操作的基本单元
>
> **logstash**取kafka里的topic然后再往ElasticSearch上传异步过程即又取又传
>
> **index-pattern**把数据按环境分按prod和test分并传到kibana
>
> **kibana**:展示数据
### 制作tomcat容器的底包镜像
> 尝试用tomcat的方式因为很多公司老项目都是用tomcat跑起来之前我们用的是springboot
[tomcat官网](tomcat.apache.org)
![1583558092305](assets/1583558092305.png)
~~~
# 200 机器:
cd /opt/src/
# 你也可以直接用我上传的,因为版本一直在变,之前的版本你是下载不下来的,如何查看新版本如上图
src]# wget http://mirrors.tuna.tsinghua.edu.cn/apache/tomcat/tomcat-8/v8.5.51/bin/apache-tomcat-8.5.51.tar.gz
src]# mkdir /data/dockerfile/tomcat
src]# tar xfv apache-tomcat-8.5.51.tar.gz -C /data/dockerfile/tomcat
src]# cd /data/dockerfile/tomcat
# 配置tomcat-关闭AJP端口
tomcat]# vi apache-tomcat-8.5.51/conf/server.xml
# 找到AJP注释掉相应的一行结果如下图8.5.51是已经自动注释掉的
~~~
![1583558364369](assets/1583558364369.png)
~~~
# 200机器删掉不需要的日志
tomcat]# vi apache-tomcat-8.5.51/conf/logging.properties
# 删掉3manager4host-manager的handlers并注释掉相关的结果如下图
# 日志级别改成INFO
~~~
![1583558487445](assets/1583558487445.png)
![1583558525033](assets/1583558525033.png)
![1583558607700](assets/1583558607700.png)
~~~
# 200机器准备Dockerfile
tomcat]# vi Dockerfile
From harbor.od.com/public/jre:8u112
RUN /bin/cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime &&\
echo 'Asia/Shanghai' >/etc/timezone
ENV CATALINA_HOME /opt/tomcat
ENV LANG zh_CN.UTF-8
ADD apache-tomcat-8.5.51/ /opt/tomcat
ADD config.yml /opt/prom/config.yml
ADD jmx_javaagent-0.3.1.jar /opt/prom/jmx_javaagent-0.3.1.jar
WORKDIR /opt/tomcat
ADD entrypoint.sh /entrypoint.sh
CMD ["/entrypoint.sh"]
tomcat]# vi config.yml
---
rules:
- pattern: '-*'
tomcat]# wget https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/0.3.1/jmx_prometheus_javaagent-0.3.1.jar -O jmx_javaagent-0.3.1.jar
tomcat]# vi entrypoint.sh
#!/bin/bash
M_OPTS="-Duser.timezone=Asia/Shanghai -javaagent:/opt/prom/jmx_javaagent-0.3.1.jar=$(hostname -i):${M_PORT:-"12346"}:/opt/prom/config.yml"
C_OPTS=${C_OPTS}
MIN_HEAP=${MIN_HEAP:-"128m"}
MAX_HEAP=${MAX_HEAP:-"128m"}
JAVA_OPTS=${JAVA_OPTS:-"-Xmn384m -Xss256k -Duser.timezone=GMT+08 -XX:+DisableExplicitGC -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSParallelRemarkEnabled -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=0 -XX:+CMSClassUnloadingEnabled -XX:LargePageSizeInBytes=128m -XX:+UseFastAccessorMethods -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=80 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+PrintClassHistogram -Dfile.encoding=UTF8 -Dsun.jnu.encoding=UTF8"}
CATALINA_OPTS="${CATALINA_OPTS}"
JAVA_OPTS="${M_OPTS} ${C_OPTS} -Xms${MIN_HEAP} -Xmx${MAX_HEAP} ${JAVA_OPTS}"
sed -i -e "1a\JAVA_OPTS=\"$JAVA_OPTS\"" -e "1a\CATALINA_OPTS=\"$CATALINA_OPTS\"" /opt/tomcat/bin/catalina.sh
cd /opt/tomcat && /opt/tomcat/bin/catalina.sh run 2>&1 >> /opt/tomcat/logs/stdout.log
tomcat]# chmod u+x entrypoint.sh
tomcat]# ll
tomcat]# docker build . -t harbor.od.com/base/tomcat:v8.5.51
tomcat]# docker push harbor.od.com/base/tomcat:v8.5.51
~~~
> **Dockerfile文件解析**
>
> - FROM镜像地址
> - RUN修改时区
> - ENV设置环境变量把tomcat软件放到opt下
> - ENV设置环境变量字符集用zh_CN.UTF-8
> - ADD把apache-tomcat-8.5.50包放到/opt/tomcat下
> - ADD让prome基于文件的自动发现服务这个可以不要因为没在用prome
> - ADD把jmx_javaagent-0.3.1.jar包放到/opt/...下用来专门收集jvm的export能提供一个http的接口
> - WORKDIR工作目录
> - ADD移动文件
> - CMD运行文件
![1583559245639](assets/1583559245639.png)
完成
### 交付tomcat形式的dubbo服务消费者到K8S集群
改造下dubbo-demo-web项目
由于是tomcat我们需要多建一条Jenkins流水线
![1583559296196](assets/1583559296196.png)
![1583559325853](assets/1583559325853.png)
![1583559348560](assets/1583559348560.png)
1
![1583559819045](assets/1583559819045.png)
2
![1583559830860](assets/1583559830860.png)
3
![1583559838755](assets/1583559838755.png)
4
![1583559908506](assets/1583559908506.png)
5
![1583559948318](assets/1583559948318.png)
6
![1583559958558](assets/1583559958558.png)
7
![1583559972282](assets/1583559972282.png)
8
![1583559985561](assets/1583559985561.png)
9
![1583560000469](assets/1583560000469.png)
10
![1583560009300](assets/1583560009300.png)
11
![1583560038370](assets/1583560038370.png)
~~~shell
# 将如下内容填入pipeline
pipeline {
agent any
stages {
stage('pull') { //get project code from repo
steps {
sh "git clone ${params.git_repo} ${params.app_name}/${env.BUILD_NUMBER} && cd ${params.app_name}/${env.BUILD_NUMBER} && git checkout ${params.git_ver}"
}
}
stage('build') { //exec mvn cmd
steps {
sh "cd ${params.app_name}/${env.BUILD_NUMBER} && /var/jenkins_home/maven-${params.maven}/bin/${params.mvn_cmd}"
}
}
stage('unzip') { //unzip target/*.war -c target/project_dir
steps {
sh "cd ${params.app_name}/${env.BUILD_NUMBER} && cd ${params.target_dir} && mkdir project_dir && unzip *.war -d ./project_dir"
}
}
stage('image') { //build image and push to registry
steps {
writeFile file: "${params.app_name}/${env.BUILD_NUMBER}/Dockerfile", text: """FROM harbor.od.com/${params.base_image}
ADD ${params.target_dir}/project_dir /opt/tomcat/webapps/${params.root_url}"""
sh "cd ${params.app_name}/${env.BUILD_NUMBER} && docker build -t harbor.od.com/${params.image_name}:${params.git_ver}_${params.add_tag} . && docker push harbor.od.com/${params.image_name}:${params.git_ver}_${params.add_tag}"
}
}
}
}
~~~
![1583560082441](assets/1583560082441.png)
save
点击构建
![1583560122560](assets/1583560122560.png)
~~~
# 填入指定参数我的gittee是有tomcat的版本的下面我依旧用的是gitlab
app_name: dubbo-demo-web
image_name: app/dubbo-demo-web
git_repo: http://gitlab.od.com:10000/909336740/dubbo-demo-web.git
git_ver: tomcat
add_tag: 20200214_1300
mvn_dir: ./
target_dir: ./dubbo-client/target
mvn_cmd: mvn clean package -Dmaven.test.skip=true
base_image: base/tomcat:v8.5.51
maven: 3.6.1-8u232
root_url: ROOT
# 点击Build进行构建等待构建完成
~~~
![1583561544404](assets/1583561544404.png)
build成功后
修改版本信息删掉20880如下图然后update
![1583630633310](assets/1583630633310.png)
![1583630769979](assets/1583630769979.png)
浏览器输入[demo-test.od.com/hello?name=tomcat](demo-test.od.com/hello?name=tomcat)
![1583630984480](assets/1583630984480.png)
完成
查看dashboard里的pod里
![1583631035074](assets/1583631035074.png)
![1583631074816](assets/1583631074816.png)
> 这些就是我们要收集的日志收到ELK
### 二进制安装部署elasticsearch
> 我们这里只部一个es的节点因为我们主要是了解数据流的方式
>
[官网下载包](https://www.elastic.co/downloads/past-releases/elasticsearch-6-8-6)右键复制链接
![1581667412370](assets/1581667412370.png)
~~~
# 12机器
~]# cd /opt/src/
src]# wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.8.6.tar.gz
src]# tar xfv elasticsearch-6.8.6.tar.gz -C /opt
src]# ln -s /opt/elasticsearch-6.8.6/ /opt/elasticsearch
src]# cd /opt/elasticsearch
# 配置
elasticsearch]# mkdir -p /data/elasticsearch/{data,logs}
# 修改以下内容
elasticsearch]# vi config/elasticsearch.yml
cluster.name: es.od.com
node.name: hdss7-12.host.com
path.data: /data/elasticsearch/data
path.logs: /data/elasticsearch/logs
bootstrap.memory_lock: true
network.host: 10.4.7.12
http.port: 9200
# 修改以下内容
elasticsearch]# vi config/jvm.options
-Xms512m
-Xmx512m
# 创建普通用户
elasticsearch]# useradd -s /bin/bash -M es
elasticsearch]# chown -R es.es /opt/elasticsearch-6.8.6/
elasticsearch]# chown -R es.es /data/elasticsearch/
# 文件描述符
elasticsearch]# vi /etc/security/limits.d/es.conf
es hard nofile 65536
es soft fsize unlimited
es hard memlock unlimited
es soft memlock unlimited
# 调整内核参数
elasticsearch]# sysctl -w vm.max_map_count=262144
elasticsearch]# echo "vm.max_map_count=262144" >> /etc/sysctl.conf
elasticsearch]# sysctl -p
# 启动
elasticsearch]# su -c "/opt/elasticsearch/bin/elasticsearch -d" es
elasticsearch]# netstat -luntp|grep 9200
# 调整ES日志模板
elasticsearch]# curl -H "Content-Type:application/json" -XPUT http://10.4.7.12:9200/_template/k8s -d '{
"template" : "k8s*",
"index_patterns": ["k8s*"],
"settings": {
"number_of_shards": 5,
"number_of_replicas": 0
}
}'
~~~
![1583631650876](assets/1583631650876.png)
> 完成,你看我敲这么多遍就知道要等
### 安装部署kafka和kafka-manager
[官网](https://kafka.apache.org)
> 做kafka的时候不建议用超过2.2.0的版本
>
~~~
# 11机器
cd /opt/src/
src]# wget https://archive.apache.org/dist/kafka/2.2.0/kafka_2.12-2.2.0.tgz
src]# tar xfv kafka_2.12-2.2.0.tgz -C /opt/
src]# ln -s /opt/kafka_2.12-2.2.0/ /opt/kafka
src]# cd /opt/kafka
kafka]# ll
~~~
![1583632474778](assets/1583632474778.png)
~~~
# 11机器配置
kafka]# mkdir -pv /data/kafka/logs
# 修改以下配置其中zk是不变的最下面两行则新增到尾部
kafka]# vi config/server.properties
log.dirs=/data/kafka/logs
zookeeper.connect=localhost:2181
log.flush.interval.messages=10000
log.flush.interval.ms=1000
delete.topic.enable=true
host.name=hdss7-11.host.com
~~~
![1583632595085](assets/1583632595085.png)
~~~
# 11机器启动
kafka]# bin/kafka-server-start.sh -daemon config/server.properties
kafka]# ps aux|grep kafka
kafka]# netstat -luntp|grep 80711
~~~
![1583632747263](assets/1583632747263.png)
![1583632764359](assets/1583632764359.png)
##### 部署kafka-manager
~~~
# 200机器制作docker
~]# mkdir /data/dockerfile/kafka-manager
~]# cd /data/dockerfile/kafka-manager
kafka-manager]# vi Dockerfile
FROM hseeberger/scala-sbt
ENV ZK_HOSTS=10.4.7.11:2181 \
KM_VERSION=2.0.0.2
RUN mkdir -p /tmp && \
cd /tmp && \
wget https://github.com/yahoo/kafka-manager/archive/${KM_VERSION}.tar.gz && \
tar xxf ${KM_VERSION}.tar.gz && \
cd /tmp/kafka-manager-${KM_VERSION} && \
sbt clean dist && \
unzip -d / ./target/universal/kafka-manager-${KM_VERSION}.zip && \
rm -fr /tmp/${KM_VERSION} /tmp/kafka-manager-${KM_VERSION}
WORKDIR /kafka-manager-${KM_VERSION}
EXPOSE 9000
ENTRYPOINT ["./bin/kafka-manager","-Dconfig.file=conf/application.conf"]
# 因为大build过程比较慢也比较容易失败20分钟左右
kafka-manager]# docker build . -t harbor.od.com/infra/kafka-manager:v2.0.0.2
# build一直失败就用我做好的不跟你的机器也得是10.4.7.11等因为dockerfile里面已经写死了
# kafka-manager]# docker pull 909336740/kafka-manager:v2.0.0.2
# kafka-manager]# docker tag 29badab5ea08 harbor.od.com/infra/kafka-manager:v2.0.0.2
kafka-manager]# docker images|grep kafka
kafka-manager]# docker push harbor.od.com/infra/kafka-manager:v2.0.0.2
~~~
![1583635072663](assets/1583635072663.png)
~~~
# 200机器配置资源清单
mkdir /data/k8s-yaml/kafka-manager
cd /data/k8s-yaml/kafka-manager
kafka-manager]# vi dp.yaml
kind: Deployment
apiVersion: extensions/v1beta1
metadata:
name: kafka-manager
namespace: infra
labels:
name: kafka-manager
spec:
replicas: 1
selector:
matchLabels:
app: kafka-manager
strategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
maxSurge: 1
revisionHistoryLimit: 7
progressDeadlineSeconds: 600
template:
metadata:
labels:
app: kafka-manager
spec:
containers:
- name: kafka-manager
image: harbor.od.com/infra/kafka-manager:v2.0.0.2
imagePullPolicy: IfNotPresent
ports:
- containerPort: 9000
protocol: TCP
env:
- name: ZK_HOSTS
value: zk1.od.com:2181
- name: APPLICATION_SECRET
value: letmein
imagePullSecrets:
- name: harbor
terminationGracePeriodSeconds: 30
securityContext:
runAsUser: 0
kafka-manager]# vi svc.yaml
kind: Service
apiVersion: v1
metadata:
name: kafka-manager
namespace: infra
spec:
ports:
- protocol: TCP
port: 9000
targetPort: 9000
selector:
app: kafka-manager
kafka-manager]# vi ingress.yaml
kind: Ingress
apiVersion: extensions/v1beta1
metadata:
name: kafka-manager
namespace: infra
spec:
rules:
- host: km.od.com
http:
paths:
- path: /
backend:
serviceName: kafka-manager
servicePort: 9000
~~~
![1583635130773](assets/1583635130773.png)
~~~
# 11机器解析域名
~]# vi /var/named/od.com.zone
serial 前滚一位
km A 10.4.7.10
~]# systemctl restart named
~]# dig -t A km.od.com @10.4.7.11 +short
# out:10.4.7.10
~~~
![1583635171353](assets/1583635171353.png)
~~~
# 22机器应用资源
~]# kubectl apply -f http://k8s-yaml.od.com/kafka-manager/dp.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/kafka-manager/svc.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/kafka-manager/ingress.yaml
~~~
![1583635645699](assets/1583635645699.png)
文件大可能起不来,需要多拉几次(当然你的资源配置高应该是没问题的)
![1581673449530](assets/1581673449530.png)
启动成功后浏览器输入[km.od.com](km.od.com)
![1583635710991](assets/1583635710991.png)
![1583635777584](assets/1583635777584.png)
填完上面三个值后就可以下拉save了
点击
![1583635809826](assets/1583635809826.png)
![1583635828160](assets/1583635828160.png)
![1583635897650](assets/1583635897650.png)
完成
### 制作filebeat底包并接入dubbo服务消费者
[Filebeat官网](https://www.elastic.co/downloads/beats/filebeat)
下载指纹
![1583636131189](assets/1583636131189.png)
打开后复制,后面的不需要复制
![1583636252938](assets/1583636252938.png)
开始前,请确保你的这些服务都是起来的
![1583636282215](assets/1583636282215.png)
~~~
# 200机器准备镜像资源配置清单
mkdir /data/dockerfile/filebeat
~]# cd /data/dockerfile/filebeat
# 刚刚复制的指纹替代到下面的FILEBEAT_SHA1来你用的是什么版本FILEBEAT_VERSION就用什么版本更新的很快我之前用的是5.1现在已经是6.1了
filebeat]# vi Dockerfile
FROM debian:jessie
ENV FILEBEAT_VERSION=7.6.1 \
FILEBEAT_SHA1=887edb2ab255084ef96dbc4c7c047bfa92dad16f263e23c0fcc80120ea5aca90a3a7a44d4783ba37b135dac76618971272a591ab4a24997d8ad40c7bc23ffabf
RUN set -x && \
apt-get update && \
apt-get install -y wget && \
wget https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-${FILEBEAT_VERSION}-linux-x86_64.tar.gz -O /opt/filebeat.tar.gz && \
cd /opt && \
echo "${FILEBEAT_SHA1} filebeat.tar.gz" | sha512sum -c - && \
tar xzvf filebeat.tar.gz && \
cd filebeat-* && \
cp filebeat /bin && \
cd /opt && \
rm -rf filebeat* && \
apt-get purge -y wget && \
apt-get autoremove -y && \
apt-get clean && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
COPY docker-entrypoint.sh /
ENTRYPOINT ["/docker-entrypoint.sh"]
filebeat]# vi docker-entrypoint.sh
#!/bin/bash
ENV=${ENV:-"test"}
PROJ_NAME=${PROJ_NAME:-"no-define"}
MULTILINE=${MULTILINE:-"^\d{2}"}
cat > /etc/filebeat.yaml << EOF
filebeat.inputs:
- type: log
fields_under_root: true
fields:
topic: logm-${PROJ_NAME}
paths:
- /logm/*.log
- /logm/*/*.log
- /logm/*/*/*.log
- /logm/*/*/*/*.log
- /logm/*/*/*/*/*.log
scan_frequency: 120s
max_bytes: 10485760
multiline.pattern: '$MULTILINE'
multiline.negate: true
multiline.match: after
multiline.max_lines: 100
- type: log
fields_under_root: true
fields:
topic: logu-${PROJ_NAME}
paths:
- /logu/*.log
- /logu/*/*.log
- /logu/*/*/*.log
- /logu/*/*/*/*.log
- /logu/*/*/*/*/*.log
- /logu/*/*/*/*/*/*.log
output.kafka:
hosts: ["10.4.7.11:9092"]
topic: k8s-fb-$ENV-%{[topic]}
version: 2.0.0
required_acks: 0
max_message_bytes: 10485760
EOF
set -xe
# If user don't provide any command
# Run filebeat
if [[ "$1" == "" ]]; then
exec filebeat -c /etc/filebeat.yaml
else
# Else allow the user to run arbitrarily commands like bash
exec "$@"
fi
filebeat]# chmod u+x docker-entrypoint.sh
filebeat]# docker build . -t harbor.od.com/infra/filebeat:v7.6.1
# build可能会失败很多次我最长的是7次下面有相关报错
filebeat]# docker images|grep filebeat
filebeat]# docker push harbor.od.com/infra/filebeat:v7.6.1
# 删掉原来的内容全部用新的,使用的两个镜像对应上你自己的镜像
filebeat]# vi /data/k8s-yaml/test/dubbo-demo-consumer/dp.yaml
kind: Deployment
apiVersion: extensions/v1beta1
metadata:
name: dubbo-demo-consumer
namespace: test
labels:
name: dubbo-demo-consumer
spec:
replicas: 1
selector:
matchLabels:
name: dubbo-demo-consumer
template:
metadata:
labels:
app: dubbo-demo-consumer
name: dubbo-demo-consumer
spec:
containers:
- name: dubbo-demo-consumer
image: harbor.od.com/app/dubbo-demo-web:tomcat_200307_1410
imagePullPolicy: IfNotPresent
ports:
- containerPort: 8080
protocol: TCP
env:
- name: C_OPTS
value: -Denv=fat -Dapollo.meta=http://apollo-configservice:8080
volumeMounts:
- mountPath: /opt/tomcat/logs
name: logm
- name: filebeat
image: harbor.od.com/infra/filebeat:v7.6.1
imagePullPolicy: IfNotPresent
env:
- name: ENV
value: test
- name: PROJ_NAME
value: dubbo-demo-web
volumeMounts:
- mountPath: /logm
name: logm
volumes:
- emptyDir: {}
name: logm
imagePullSecrets:
- name: harbor
restartPolicy: Always
terminationGracePeriodSeconds: 30
securityContext:
runAsUser: 0
schedulerName: default-scheduler
strategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
maxSurge: 1
revisionHistoryLimit: 7
progressDeadlineSeconds: 600
~~~
> 相关报错(其它问题基本都是网络不稳定的问题):![1583639164435](assets/1583639164435.png)
>
> 因为你用的指纹不是自己的,或者版本没写对。
>
> **dp.yaml文件解析** spec-containers下有两个name对应的两个容器这就是边车模式sidecar
~~~
# 22机器应用资源清单
~]# kubectl apply -f http://k8s-yaml.od.com/test/dubbo-demo-consumer/dp.yaml
#out: deployment.extensions/dubbo-demo-consumer configured
~]# kubectl get pods -n test
~~~
![1583640124995](assets/1583640124995.png)
机器在21机器
![1583640217181](assets/1583640217181.png)
~~~
# 查看filebeat日志21机器
~]# docker ps -a|grep consumer
~]# docker exec -ti a6adcd6e83b3 bash
:/# cd /logm
:/#/logm# ls
:/#/logm# cd ..
# 这个log是你每一次刷新demo页面都会有数据你把它夯在这里
:/# tail -fn 200 /logm/stdout.log
# 日志就都在这里了
~~~
![1583640393605](assets/1583640393605.png)
~~~
# 浏览器输入demo-test.com/hello?name=tomcat
~~~
![1583640365512](assets/1583640365512.png)
刷新上面的页面去21机器看log
![1583640316947](assets/1583640316947.png)
[刷新km.od.com/clusters/kafka-od/topics](km.od.com/clusters/kafka-od/topics)
![1583640444719](assets/1583640444719.png)
完成
### 部署logstash镜像
~~~
# 200机器准备镜像、资源清单
# logstash的版本需要和es的版本一样11机器cd /opt/目录下即可查看到
~]# docker pull logstash:6.8.6
~]# docker images|grep logstash
~]# docker tag d0a2dac51fcb harbor.od.com/infra/logstash:v6.8.6
~]# docker push harbor.od.com/infra/logstash:v6.8.6
~]# mkdir /etc/logstash
~]# vi /etc/logstash/logstash-test.conf
input {
kafka {
bootstrap_servers => "10.4.7.11:9092"
client_id => "10.4.7.200"
consumer_threads => 4
group_id => "k8s_test"
topics_pattern => "k8s-fb-test-.*"
}
}
filter {
json {
source => "message"
}
}
output {
elasticsearch {
hosts => ["10.4.7.12:9200"]
index => "k8s-test-%{+YYYY.MM.DD}"
}
}
~]# vi /etc/logstash/logstash-prod.conf
input {
kafka {
bootstrap_servers => "10.4.7.11:9092"
client_id => "10.4.7.200"
consumer_threads => 4
group_id => "k8s_prod"
topics_pattern => "k8s-fb-prod-.*"
}
}
filter {
json {
source => "message"
}
}
output {
elasticsearch {
hosts => ["10.4.7.12:9200"]
index => "k8s-prod-%{+YYYY.MM.DD}"
}
}
# 启动
~]# docker run -d --name logstash-test -v /etc/logstash:/etc/logstash harbor.od.com/infra/logstash:v6.8.6 -f /etc/logstash/logstash-test.conf
~]# docker ps -a|grep logstash
~~~
[^:%s/test/prod/g]: 在vi命令行输入左边内容即可将文本里面得test全部换成prod
![1583651857160](assets/1583651857160.png)
我们刷新demo页面让kafka里面更新些日志
![1583651874243](assets/1583651874243.png)
有日志了
![1583651931546](assets/1583651931546.png)
~~~
# 200机器验证ES索引可能比较慢
~]# curl http://10.4.7.12:9200/_cat/indices?v
~~~
![1583652168302](assets/1583652168302.png)
> 这个反应有点慢,我等了快三分钟
完成
### 交付kibana到K8S集群
> 为什么用kibana当然运维可以直接在dashboard里exec进去然后命令行看情况但是开发或者测试不行那是机密的我们得要一个页面供他们使用使用需要kibana。
~~~
~]# docker pull kibana:6.8.6
~]# docker images|grep kibana
~]# docker tag adfab5632ef4 harbor.od.com/infra/kibana:v6.8.6
~]# docker push harbor.od.com/infra/kibana:v6.8.6
~]# mkdir /data/k8s-yaml/kibana
~]# cd /data/k8s-yaml/kibana/
kibana]# vi dp.yaml
kind: Deployment
apiVersion: extensions/v1beta1
metadata:
name: kibana
namespace: infra
labels:
name: kibana
spec:
replicas: 1
selector:
matchLabels:
name: kibana
template:
metadata:
labels:
app: kibana
name: kibana
spec:
containers:
- name: kibana
image: harbor.od.com/infra/kibana:v6.8.6
imagePullPolicy: IfNotPresent
ports:
- containerPort: 5601
protocol: TCP
env:
- name: ELASTICSEARCH_URL
value: http://10.4.7.12:9200
imagePullSecrets:
- name: harbor
securityContext:
runAsUser: 0
strategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
maxSurge: 1
revisionHistoryLimit: 7
progressDeadlineSeconds: 600
kibana]# vi svc.yaml
kind: Service
apiVersion: v1
metadata:
name: kibana
namespace: infra
spec:
ports:
- protocol: TCP
port: 5601
targetPort: 5601
selector:
app: kibana
kibana]# vi ingress.yaml
kind: Ingress
apiVersion: extensions/v1beta1
metadata:
name: kibana
namespace: infra
spec:
rules:
- host: kibana.od.com
http:
paths:
- path: /
backend:
serviceName: kibana
servicePort: 5601
~~~
![1583652777163](assets/1583652777163.png)
~~~
# 11机器解析域名
~]# vi /var/named/od.com.zone
serial 前滚一位
kibana A 10.4.7.10
~]# systemctl restart named
~]# dig -t A kibana.od.com @10.4.7.11 +short
~~~
![1583652835822](assets/1583652835822.png)
~~~
# 22机器21机器还夯着log应用资源清单
~]# kubectl apply -f http://k8s-yaml.od.com/kibana/dp.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/kibana/svc.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/kibana/ingress.yaml
~]# kubectl get pods -n infra
~~~
![1583653095099](assets/1583653095099.png)
[kibana.od.com](kibana.od.com)
> 我用的低配8C32G机器快跑不动了还会显示service not yet
![1581735655839](assets/1581735655839.png)
![1583653403755](assets/1583653403755.png)
> 点完可能会转圈转很久
![1583654044637](assets/1583654044637.png)
![1583654055784](assets/1583654055784.png)
去创建
![1583653710404](assets/1583653710404.png)
![1583653734639](assets/1583653734639.png)
![1583653767919](assets/1583653767919.png)
创建后,你就能看到日志
![1583654148342](assets/1583654148342.png)
把prod里的configservice和admin依次起来
![1583654217058](assets/1583654217058.png)
~~~
# 200机器
cd /data/k8s-yaml/prod/dubbo-demo-consumer/
dubbo-demo-consumer]# cp ../../test/dubbo-demo-consumer/dp.yaml .
# y
# 修改namespace为prodfat改成prohttp地址也改了
dubbo-demo-consumer]# vi dp.yaml
~~~
![1583654303335](assets/1583654303335.png)
![1583654391353](assets/1583654391353.png)
[config-prod.od.com](config-prod.od.com)
![1583654579273](assets/1583654579273.png)
完成
### 详解Kibana生产实践方法
查看环境情况
确认Eureka有config和admin
![1583654579273](assets/1583654579273.png)
确认Apollo里有两个环境
![1583654655665](assets/1583654655665.png)
确认完后我们先把service起来
![1583654706752](assets/1583654706752.png)
然后到consumerconsumer需要接日志
~~~~
# 22机器
~]# kubectl apply -f http://k8s-yaml.od.com/prod/dubbo-demo-consumer/dp.yaml
~]# kubectl get pods -n prod
~~~~
![1583654764653](assets/1583654764653.png)
~~~
# 200机器
# 启动
~]# docker run -d --name logstash-prod -v /etc/logstash:/etc/logstash harbor.od.com/infra/logstash:v6.8.6 -f /etc/logstash/logstash-prod.conf
~]# docker ps -a|grep logstash
# curl一下这时候还只有test
~]# curl http://10.4.7.12:9200/_cat/indices?v
~~~
![1583654862812](assets/1583654862812.png)
~~~
# 访问浏览器demo-prod.od.com/hello?name=prod
~~~
![1583654914493](assets/1583654914493.png)
我们看一下调度到哪个节点了
![1583654962325](assets/1583654962325.png)
~~~
# 调度到21节点我们去21节点看一下
~]# docker ps -a|grep consumer
~]# docker exec -ti 094e68c795b0 bash
:/# cd /logm
:/logm# ls
:/logm# tail -fn 200 stdout.log
~~~
![1583655033176](assets/1583655033176.png)
夯住
![1583655055686](assets/1583655055686.png)
[http://km.od.com](http://km.od.com/)
![1583655088618](assets/1583655088618.png)
![1583655114357](assets/1583655114357.png)
![1583655130583](assets/1583655130583.png)
已经有prod了
~~~
# 200机器curl的时候可能要等一下才有可以去多刷一下网页产生日志
~]# curl http://10.4.7.12:9200/_cat/indices?v
~~~
![1583655264326](assets/1583655264326.png)
去kibana配一下
![1583655369240](assets/1583655369240.png)
![1583655383868](assets/1583655383868.png)
##### 如何使用kibana
时间选择
![1583655477179](assets/1583655477179.png)
![1583655509551](assets/1583655509551.png)
> test没用数据的点下这个就有了平常用的最多的也是today后面突然没数据了你就可以刷新或者点时间特别是配置差的同学
>
> ![1583655706547](assets/1583655706547.png)
环境选择器
![1583655530032](assets/1583655530032.png)
关键字选择器
先把message顶上来还有log.file.path、hostname
![1583655759010](assets/1583655759010.png)
我们先制造一些错误把service scale成0
![1583655838132](assets/1583655838132.png)
然后刷新一下页面让它报错记得是test环境
![1583655858792](assets/1583655858792.png)
搜exception关键字并可展开
![1583655981692](assets/1583655981692.png)
![1583656009350](assets/1583656009350.png)
现在consumer日志已经完成了记得把service的pod还原并删掉consumer的pod让它重启
#### 课外作业(不是一定要完成,但是你做了我做的这些)
consumer日志已经完成还可以做service日志
~~~
# 200机器
# 修改一下内容
~]# cd /data/dockerfile/jre8/
# 修改以下内容
jre8]# vi entrypoint.sh
exec java -jar ${M_OPTS} ${C_OPTS} ${JAR_BALL} 2>&1 >> /opt/logs/stdout.log
jre8]# docker build . -t harbor.od.com/base/jre8:8u112_with_logs
jre8]# docker push harbor.od.com/base/jre8:8u112_with_logs
~~~
![1584067987917](assets/1584067987917.png)
![1581752521087](assets/1581752521087.png)
去修改一下Jenkins加一个底包
![1584237876688](assets/1584237876688.png)
![1584237900572](assets/1584237900572.png)
![1584237947516](assets/1584237947516.png)
下面就要你接着做了