12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340 |
- {
- "__type__": "cc.EffectAsset",
- "_name": "pipeline/deferred-lighting",
- "_objFlags": 0,
- "__editorExtras__": {},
- "_native": "",
- "techniques": [
- {
- "passes": [
- {
- "pass": "deferred-lighting",
- "rasterizerState": {
- "cullMode": 0
- },
- "program": "pipeline/deferred-lighting|lighting-vs|lighting-fs",
- "depthStencilState": {
- "depthTest": false,
- "depthWrite": false
- }
- }
- ]
- }
- ],
- "shaders": [
- {
- "blocks": [],
- "samplerTextures": [],
- "samplers": [],
- "textures": [],
- "buffers": [],
- "images": [],
- "subpassInputs": [],
- "attributes": [
- {
- "name": "a_position",
- "defines": [],
- "format": 32,
- "location": 0
- },
- {
- "name": "a_normal",
- "defines": [],
- "format": 32,
- "location": 1
- },
- {
- "name": "a_texCoord",
- "defines": [],
- "format": 21,
- "location": 2
- },
- {
- "name": "a_tangent",
- "defines": [],
- "format": 44,
- "location": 3
- },
- {
- "name": "a_joints",
- "defines": [
- "CC_USE_SKINNING"
- ],
- "location": 4
- },
- {
- "name": "a_weights",
- "defines": [
- "CC_USE_SKINNING"
- ],
- "format": 44,
- "location": 5
- },
- {
- "name": "a_jointAnimInfo",
- "defines": [
- "USE_INSTANCING",
- "CC_USE_BAKED_ANIMATION"
- ],
- "format": 44,
- "isInstanced": true,
- "location": 6
- },
- {
- "name": "a_matWorld0",
- "defines": [
- "USE_INSTANCING"
- ],
- "format": 44,
- "isInstanced": true,
- "location": 7
- },
- {
- "name": "a_matWorld1",
- "defines": [
- "USE_INSTANCING"
- ],
- "format": 44,
- "isInstanced": true,
- "location": 8
- },
- {
- "name": "a_matWorld2",
- "defines": [
- "USE_INSTANCING"
- ],
- "format": 44,
- "isInstanced": true,
- "location": 9
- },
- {
- "name": "a_lightingMapUVParam",
- "defines": [
- "USE_INSTANCING",
- "CC_USE_LIGHTMAP"
- ],
- "format": 44,
- "isInstanced": true,
- "location": 10
- },
- {
- "name": "a_localShadowBiasAndProbeId",
- "defines": [
- "USE_INSTANCING"
- ],
- "format": 44,
- "isInstanced": true,
- "location": 11
- },
- {
- "name": "a_reflectionProbeData",
- "defines": [
- "USE_INSTANCING",
- "CC_USE_REFLECTION_PROBE"
- ],
- "format": 44,
- "isInstanced": true,
- "location": 12
- },
- {
- "name": "a_sh_linear_const_r",
- "defines": [
- "USE_INSTANCING",
- "CC_USE_LIGHT_PROBE"
- ],
- "format": 44,
- "isInstanced": true,
- "location": 13
- },
- {
- "name": "a_sh_linear_const_g",
- "defines": [
- "USE_INSTANCING",
- "CC_USE_LIGHT_PROBE"
- ],
- "format": 44,
- "isInstanced": true,
- "location": 14
- },
- {
- "name": "a_sh_linear_const_b",
- "defines": [
- "USE_INSTANCING",
- "CC_USE_LIGHT_PROBE"
- ],
- "format": 44,
- "isInstanced": true,
- "location": 15
- },
- {
- "name": "a_vertexId",
- "defines": [
- "CC_USE_MORPH"
- ],
- "format": 11,
- "location": 16
- }
- ],
- "varyings": [
- {
- "name": "v_uv",
- "type": 14,
- "count": 1,
- "defines": [],
- "stageFlags": 17,
- "location": 0
- },
- {
- "name": "v_sh_linear_const_r",
- "type": 16,
- "count": 1,
- "defines": [
- "CC_USE_LIGHT_PROBE",
- "USE_INSTANCING"
- ],
- "stageFlags": 16,
- "location": 1
- },
- {
- "name": "v_sh_linear_const_g",
- "type": 16,
- "count": 1,
- "defines": [
- "CC_USE_LIGHT_PROBE",
- "USE_INSTANCING"
- ],
- "stageFlags": 16,
- "location": 2
- },
- {
- "name": "v_sh_linear_const_b",
- "type": 16,
- "count": 1,
- "defines": [
- "CC_USE_LIGHT_PROBE",
- "USE_INSTANCING"
- ],
- "stageFlags": 16,
- "location": 3
- }
- ],
- "fragColors": [
- {
- "name": "fragColor",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "defines": [],
- "stageFlags": 16,
- "location": 0
- }
- ],
- "descriptors": [
- {
- "rate": 0,
- "blocks": [
- {
- "tags": {
- "builtin": "local"
- },
- "name": "CCLocal",
- "members": [
- {
- "name": "cc_matWorld",
- "typename": "mat4",
- "type": 25,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_matWorldIT",
- "typename": "mat4",
- "type": 25,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_lightingMapUVParam",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_localShadowBias",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_reflectionProbeData1",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_reflectionProbeData2",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_reflectionProbeBlendData1",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_reflectionProbeBlendData2",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "highp "
- }
- ],
- "defines": [
- "CC_USE_REFLECTION_PROBE"
- ],
- "stageFlags": 16
- },
- {
- "tags": {
- "builtin": "local"
- },
- "name": "CCSH",
- "members": [
- {
- "name": "cc_sh_linear_const_r",
- "typename": "vec4",
- "type": 16,
- "count": 1
- },
- {
- "name": "cc_sh_linear_const_g",
- "typename": "vec4",
- "type": 16,
- "count": 1
- },
- {
- "name": "cc_sh_linear_const_b",
- "typename": "vec4",
- "type": 16,
- "count": 1
- },
- {
- "name": "cc_sh_quadratic_r",
- "typename": "vec4",
- "type": 16,
- "count": 1
- },
- {
- "name": "cc_sh_quadratic_g",
- "typename": "vec4",
- "type": 16,
- "count": 1
- },
- {
- "name": "cc_sh_quadratic_b",
- "typename": "vec4",
- "type": 16,
- "count": 1
- },
- {
- "name": "cc_sh_quadratic_a",
- "typename": "vec4",
- "type": 16,
- "count": 1
- }
- ],
- "defines": [
- "CC_USE_LIGHT_PROBE",
- "!USE_INSTANCING"
- ],
- "stageFlags": 16
- },
- {
- "tags": {
- "builtin": "local"
- },
- "name": "CCForwardLight",
- "members": [
- {
- "name": "cc_lightPos",
- "typename": "vec4",
- "type": 16,
- "count": 0,
- "precision": "highp ",
- "isArray": true
- },
- {
- "name": "cc_lightColor",
- "typename": "vec4",
- "type": 16,
- "count": 0,
- "isArray": true
- },
- {
- "name": "cc_lightSizeRangeAngle",
- "typename": "vec4",
- "type": 16,
- "count": 0,
- "isArray": true
- },
- {
- "name": "cc_lightDir",
- "typename": "vec4",
- "type": 16,
- "count": 0,
- "isArray": true
- },
- {
- "name": "cc_lightBoundingSizeVS",
- "typename": "vec4",
- "type": 16,
- "count": 0,
- "isArray": true
- }
- ],
- "defines": [
- "CC_ENABLE_CLUSTERED_LIGHT_CULLING"
- ],
- "stageFlags": 16
- }
- ],
- "samplerTextures": [
- {
- "tags": {
- "builtin": "local"
- },
- "name": "cc_reflectionProbeCubemap",
- "typename": "samplerCube",
- "type": 31,
- "count": 1,
- "defines": [
- "CC_USE_REFLECTION_PROBE"
- ],
- "stageFlags": 16
- },
- {
- "tags": {
- "builtin": "local"
- },
- "name": "cc_reflectionProbePlanarMap",
- "typename": "sampler2D",
- "type": 28,
- "count": 1,
- "defines": [
- "CC_USE_REFLECTION_PROBE"
- ],
- "stageFlags": 16
- },
- {
- "tags": {
- "builtin": "local"
- },
- "name": "cc_reflectionProbeDataMap",
- "typename": "sampler2D",
- "type": 28,
- "count": 1,
- "defines": [
- "CC_USE_REFLECTION_PROBE"
- ],
- "stageFlags": 16
- },
- {
- "tags": {
- "builtin": "local"
- },
- "name": "cc_reflectionProbeBlendCubemap",
- "typename": "samplerCube",
- "type": 31,
- "count": 1,
- "defines": [
- "CC_USE_REFLECTION_PROBE"
- ],
- "stageFlags": 16
- }
- ],
- "samplers": [],
- "textures": [],
- "buffers": [],
- "images": [],
- "subpassInputs": []
- },
- {
- "rate": 1,
- "blocks": [],
- "samplerTextures": [],
- "samplers": [],
- "textures": [],
- "buffers": [],
- "images": [],
- "subpassInputs": []
- },
- {
- "rate": 2,
- "blocks": [],
- "samplerTextures": [],
- "samplers": [],
- "textures": [],
- "buffers": [],
- "images": [],
- "subpassInputs": []
- },
- {
- "rate": 3,
- "blocks": [
- {
- "tags": {
- "builtin": "global"
- },
- "name": "CCGlobal",
- "members": [
- {
- "name": "cc_time",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_screenSize",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_nativeSize",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_probeInfo",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_debug_view_mode",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- }
- ],
- "defines": [],
- "stageFlags": 17
- },
- {
- "tags": {
- "builtin": "global"
- },
- "name": "CCCamera",
- "members": [
- {
- "name": "cc_matView",
- "typename": "mat4",
- "type": 25,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_matViewInv",
- "typename": "mat4",
- "type": 25,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_matProj",
- "typename": "mat4",
- "type": 25,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_matProjInv",
- "typename": "mat4",
- "type": 25,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_matViewProj",
- "typename": "mat4",
- "type": 25,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_matViewProjInv",
- "typename": "mat4",
- "type": 25,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_cameraPos",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_surfaceTransform",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_screenScale",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_exposure",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_mainLitDir",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_mainLitColor",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_ambientSky",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_ambientGround",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_fogColor",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_fogBase",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_fogAdd",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_nearFar",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_viewPort",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- }
- ],
- "defines": [],
- "stageFlags": 17
- },
- {
- "tags": {
- "builtin": "global"
- },
- "name": "CCShadow",
- "members": [
- {
- "name": "cc_matLightView",
- "typename": "mat4",
- "type": 25,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_matLightViewProj",
- "typename": "mat4",
- "type": 25,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_shadowInvProjDepthInfo",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_shadowProjDepthInfo",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_shadowProjInfo",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "highp "
- },
- {
- "name": "cc_shadowNFLSInfo",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_shadowWHPBInfo",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_shadowLPNNInfo",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- },
- {
- "name": "cc_shadowColor",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "lowp "
- },
- {
- "name": "cc_planarNDInfo",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "mediump "
- }
- ],
- "defines": [],
- "stageFlags": 16
- },
- {
- "tags": {
- "builtin": "global"
- },
- "name": "CCCSM",
- "members": [
- {
- "name": "cc_csmViewDir0",
- "typename": "vec4",
- "type": 16,
- "count": 4,
- "precision": "highp ",
- "isArray": true
- },
- {
- "name": "cc_csmViewDir1",
- "typename": "vec4",
- "type": 16,
- "count": 4,
- "precision": "highp ",
- "isArray": true
- },
- {
- "name": "cc_csmViewDir2",
- "typename": "vec4",
- "type": 16,
- "count": 4,
- "precision": "highp ",
- "isArray": true
- },
- {
- "name": "cc_csmAtlas",
- "typename": "vec4",
- "type": 16,
- "count": 4,
- "precision": "highp ",
- "isArray": true
- },
- {
- "name": "cc_matCSMViewProj",
- "typename": "mat4",
- "type": 25,
- "count": 4,
- "precision": "highp ",
- "isArray": true
- },
- {
- "name": "cc_csmProjDepthInfo",
- "typename": "vec4",
- "type": 16,
- "count": 4,
- "precision": "highp ",
- "isArray": true
- },
- {
- "name": "cc_csmProjInfo",
- "typename": "vec4",
- "type": 16,
- "count": 4,
- "precision": "highp ",
- "isArray": true
- },
- {
- "name": "cc_csmSplitsInfo",
- "typename": "vec4",
- "type": 16,
- "count": 1,
- "precision": "highp "
- }
- ],
- "defines": [
- "CC_SUPPORT_CASCADED_SHADOW_MAP"
- ],
- "stageFlags": 16
- }
- ],
- "samplerTextures": [
- {
- "tags": {
- "builtin": "global"
- },
- "name": "cc_shadowMap",
- "typename": "sampler2D",
- "type": 28,
- "count": 1,
- "precision": "highp ",
- "defines": [
- "CC_RECEIVE_SHADOW"
- ],
- "stageFlags": 16
- },
- {
- "tags": {
- "builtin": "global"
- },
- "name": "cc_spotShadowMap",
- "typename": "sampler2D",
- "type": 28,
- "count": 1,
- "precision": "highp ",
- "defines": [
- "CC_RECEIVE_SHADOW"
- ],
- "stageFlags": 16
- },
- {
- "tags": {
- "builtin": "global"
- },
- "name": "cc_environment",
- "typename": "samplerCube",
- "type": 31,
- "count": 1,
- "defines": [],
- "stageFlags": 16
- },
- {
- "tags": {
- "builtin": "global"
- },
- "name": "cc_diffuseMap",
- "typename": "samplerCube",
- "type": 31,
- "count": 1,
- "defines": [
- "CC_USE_IBL",
- "CC_USE_DIFFUSEMAP"
- ],
- "stageFlags": 16
- },
- {
- "name": "albedoMap",
- "type": 28,
- "count": 1,
- "defines": [],
- "stageFlags": 16,
- "binding": 0
- },
- {
- "name": "normalMap",
- "type": 28,
- "count": 1,
- "defines": [],
- "stageFlags": 16,
- "binding": 1
- },
- {
- "name": "emissiveMap",
- "type": 28,
- "count": 1,
- "defines": [],
- "stageFlags": 16,
- "binding": 2
- },
- {
- "name": "depthStencil",
- "type": 28,
- "count": 1,
- "defines": [],
- "stageFlags": 16,
- "binding": 3
- }
- ],
- "samplers": [],
- "textures": [],
- "buffers": [
- {
- "name": "b_ccLightsBuffer",
- "memoryAccess": 1,
- "defines": [
- "CC_ENABLE_CLUSTERED_LIGHT_CULLING"
- ],
- "stageFlags": 16,
- "binding": 4
- },
- {
- "name": "b_clusterLightIndicesBuffer",
- "memoryAccess": 1,
- "defines": [
- "CC_ENABLE_CLUSTERED_LIGHT_CULLING"
- ],
- "stageFlags": 16,
- "binding": 5
- },
- {
- "name": "b_clusterLightGridBuffer",
- "memoryAccess": 1,
- "defines": [
- "CC_ENABLE_CLUSTERED_LIGHT_CULLING"
- ],
- "stageFlags": 16,
- "binding": 6
- }
- ],
- "images": [],
- "subpassInputs": []
- }
- ],
- "hash": 1701877551,
- "glsl4": {
- "vert": "\nprecision highp float;\n#define QUATER_PI 0.78539816340\n#define HALF_PI 1.57079632679\n#define PI 3.14159265359\n#define PI2 6.28318530718\n#define PI4 12.5663706144\n#define INV_QUATER_PI 1.27323954474\n#define INV_HALF_PI 0.63661977237\n#define INV_PI 0.31830988618\n#define INV_PI2 0.15915494309\n#define INV_PI4 0.07957747155\n#define EPSILON 1e-6\n#define EPSILON_LOWP 1e-4\n#define LOG2 1.442695\n#define EXP_VALUE 2.71828183\n#define FP_MAX 65504.0\n#define FP_SCALE 0.0009765625\n#define FP_SCALE_INV 1024.0\n#define GRAY_VECTOR vec3(0.299, 0.587, 0.114)\n#define LIGHT_MAP_TYPE_DISABLED 0\n#define LIGHT_MAP_TYPE_ALL_IN_ONE 1\n#define LIGHT_MAP_TYPE_INDIRECT_OCCLUSION 2\n#define REFLECTION_PROBE_TYPE_NONE 0\n#define REFLECTION_PROBE_TYPE_CUBE 1\n#define REFLECTION_PROBE_TYPE_PLANAR 2\n#define REFLECTION_PROBE_TYPE_BLEND 3\n#define REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX 4\n#define LIGHT_TYPE_DIRECTIONAL 0.0\n#define LIGHT_TYPE_SPHERE 1.0\n#define LIGHT_TYPE_SPOT 2.0\n#define LIGHT_TYPE_POINT 3.0\n#define LIGHT_TYPE_RANGED_DIRECTIONAL 4.0\n#define IS_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_DIRECTIONAL)) < EPSILON_LOWP)\n#define IS_SPHERE_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPHERE)) < EPSILON_LOWP)\n#define IS_SPOT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPOT)) < EPSILON_LOWP)\n#define IS_POINT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_POINT)) < EPSILON_LOWP)\n#define IS_RANGED_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_RANGED_DIRECTIONAL)) < EPSILON_LOWP)\n#define TONE_MAPPING_ACES 0\n#define TONE_MAPPING_LINEAR 1\n#define SURFACES_MAX_TRANSMIT_DEPTH_VALUE 999999.0\n#ifndef CC_SURFACES_DEBUG_VIEW_SINGLE\n #define CC_SURFACES_DEBUG_VIEW_SINGLE 1\n#endif\n#ifndef CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC\n #define CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC 2\n#endif\nstruct StandardVertInput {\n highp vec4 position;\n vec3 normal;\n vec4 tangent;\n};\nlayout(location = 0) in vec3 a_position;\nlayout(location = 1) in vec3 a_normal;\nlayout(location = 2) in vec2 a_texCoord;\nlayout(location = 3) in vec4 a_tangent;\n#if CC_USE_SKINNING\n layout(location = 4) in u32vec4 a_joints;\n layout(location = 5) in vec4 a_weights;\n#endif\n#if USE_INSTANCING\n #if CC_USE_BAKED_ANIMATION\n layout(location = 6) in highp vec4 a_jointAnimInfo;\n #endif\n layout(location = 7) in vec4 a_matWorld0;\n layout(location = 8) in vec4 a_matWorld1;\n layout(location = 9) in vec4 a_matWorld2;\n #if CC_USE_LIGHTMAP\n layout(location = 10) in vec4 a_lightingMapUVParam;\n #endif\n #if CC_USE_REFLECTION_PROBE || CC_RECEIVE_SHADOW\n #if CC_RECEIVE_SHADOW\n #endif\n layout(location = 11) in vec4 a_localShadowBiasAndProbeId;\n #endif\n #if CC_USE_REFLECTION_PROBE\n layout(location = 12) in vec4 a_reflectionProbeData;\n #endif\n #if CC_USE_LIGHT_PROBE\n layout(location = 13) in vec4 a_sh_linear_const_r;\n layout(location = 14) in vec4 a_sh_linear_const_g;\n layout(location = 15) in vec4 a_sh_linear_const_b;\n #endif\n#endif\n#if CC_USE_MORPH\n#endif\nlayout(set = 0, binding = 0) uniform CCGlobal {\n highp vec4 cc_time;\n mediump vec4 cc_screenSize;\n mediump vec4 cc_nativeSize;\n mediump vec4 cc_probeInfo;\n mediump vec4 cc_debug_view_mode;\n};\nlayout(set = 0, binding = 1) uniform CCCamera {\n highp mat4 cc_matView;\n highp mat4 cc_matViewInv;\n highp mat4 cc_matProj;\n highp mat4 cc_matProjInv;\n highp mat4 cc_matViewProj;\n highp mat4 cc_matViewProjInv;\n highp vec4 cc_cameraPos;\n mediump vec4 cc_surfaceTransform;\n mediump vec4 cc_screenScale;\n mediump vec4 cc_exposure;\n mediump vec4 cc_mainLitDir;\n mediump vec4 cc_mainLitColor;\n mediump vec4 cc_ambientSky;\n mediump vec4 cc_ambientGround;\n mediump vec4 cc_fogColor;\n mediump vec4 cc_fogBase;\n mediump vec4 cc_fogAdd;\n mediump vec4 cc_nearFar;\n mediump vec4 cc_viewPort;\n};\nlayout(location = 0) out vec2 v_uv;\nvoid main () {\n vec4 position;\n position = vec4(a_position, 1.0);\n position.xy = cc_cameraPos.w == 0.0 ? vec2(position.xy.x, -position.xy.y) : position.xy;\n gl_Position = vec4(position.x, position.y, 1.0, 1.0);\n v_uv = a_texCoord;\n}",
- "frag": "\n precision highp float;\n layout(set = 0, binding = 0) uniform CCGlobal {\n highp vec4 cc_time;\n mediump vec4 cc_screenSize;\n mediump vec4 cc_nativeSize;\n mediump vec4 cc_probeInfo;\n mediump vec4 cc_debug_view_mode;\n };\n layout(set = 0, binding = 1) uniform CCCamera {\n highp mat4 cc_matView;\n highp mat4 cc_matViewInv;\n highp mat4 cc_matProj;\n highp mat4 cc_matProjInv;\n highp mat4 cc_matViewProj;\n highp mat4 cc_matViewProjInv;\n highp vec4 cc_cameraPos;\n mediump vec4 cc_surfaceTransform;\n mediump vec4 cc_screenScale;\n mediump vec4 cc_exposure;\n mediump vec4 cc_mainLitDir;\n mediump vec4 cc_mainLitColor;\n mediump vec4 cc_ambientSky;\n mediump vec4 cc_ambientGround;\n mediump vec4 cc_fogColor;\n mediump vec4 cc_fogBase;\n mediump vec4 cc_fogAdd;\n mediump vec4 cc_nearFar;\n mediump vec4 cc_viewPort;\n };\n #define QUATER_PI 0.78539816340\n #define HALF_PI 1.57079632679\n #define PI 3.14159265359\n #define PI2 6.28318530718\n #define PI4 12.5663706144\n #define INV_QUATER_PI 1.27323954474\n #define INV_HALF_PI 0.63661977237\n #define INV_PI 0.31830988618\n #define INV_PI2 0.15915494309\n #define INV_PI4 0.07957747155\n #define EPSILON 1e-6\n #define EPSILON_LOWP 1e-4\n #define LOG2 1.442695\n #define EXP_VALUE 2.71828183\n #define FP_MAX 65504.0\n #define FP_SCALE 0.0009765625\n #define FP_SCALE_INV 1024.0\n #define GRAY_VECTOR vec3(0.299, 0.587, 0.114)\n #define LIGHT_MAP_TYPE_DISABLED 0\n #define LIGHT_MAP_TYPE_ALL_IN_ONE 1\n #define LIGHT_MAP_TYPE_INDIRECT_OCCLUSION 2\n #define REFLECTION_PROBE_TYPE_NONE 0\n #define REFLECTION_PROBE_TYPE_CUBE 1\n #define REFLECTION_PROBE_TYPE_PLANAR 2\n #define REFLECTION_PROBE_TYPE_BLEND 3\n #define REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX 4\n #define LIGHT_TYPE_DIRECTIONAL 0.0\n #define LIGHT_TYPE_SPHERE 1.0\n #define LIGHT_TYPE_SPOT 2.0\n #define LIGHT_TYPE_POINT 3.0\n #define LIGHT_TYPE_RANGED_DIRECTIONAL 4.0\n #define IS_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_DIRECTIONAL)) < EPSILON_LOWP)\n #define IS_SPHERE_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPHERE)) < EPSILON_LOWP)\n #define IS_SPOT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPOT)) < EPSILON_LOWP)\n #define IS_POINT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_POINT)) < EPSILON_LOWP)\n #define IS_RANGED_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_RANGED_DIRECTIONAL)) < EPSILON_LOWP)\n #define TONE_MAPPING_ACES 0\n #define TONE_MAPPING_LINEAR 1\n #define SURFACES_MAX_TRANSMIT_DEPTH_VALUE 999999.0\n #ifndef CC_SURFACES_DEBUG_VIEW_SINGLE\n #define CC_SURFACES_DEBUG_VIEW_SINGLE 1\n #endif\n #ifndef CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC\n #define CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC 2\n #endif\n vec3 SRGBToLinear (vec3 gamma) {\n #ifdef CC_USE_SURFACE_SHADER\n #if CC_USE_DEBUG_VIEW == CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC && CC_SURFACES_ENABLE_DEBUG_VIEW\n if (!IS_DEBUG_VIEW_COMPOSITE_ENABLE_GAMMA_CORRECTION) {\n return gamma;\n }\n #endif\n #endif\n return gamma * gamma;\n }\n vec3 LinearToSRGB(vec3 linear) {\n #ifdef CC_USE_SURFACE_SHADER\n #if CC_USE_DEBUG_VIEW == CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC && CC_SURFACES_ENABLE_DEBUG_VIEW\n if (!IS_DEBUG_VIEW_COMPOSITE_ENABLE_GAMMA_CORRECTION) {\n return linear;\n }\n #endif\n #endif\n return sqrt(linear);\n }\n layout(set = 0, binding = 2) uniform CCShadow {\n highp mat4 cc_matLightView;\n highp mat4 cc_matLightViewProj;\n highp vec4 cc_shadowInvProjDepthInfo;\n highp vec4 cc_shadowProjDepthInfo;\n highp vec4 cc_shadowProjInfo;\n mediump vec4 cc_shadowNFLSInfo;\n mediump vec4 cc_shadowWHPBInfo;\n mediump vec4 cc_shadowLPNNInfo;\n lowp vec4 cc_shadowColor;\n mediump vec4 cc_planarNDInfo;\n };\n #if CC_SUPPORT_CASCADED_SHADOW_MAP\n layout(set = 0, binding = 3) uniform CCCSM {\n highp vec4 cc_csmViewDir0[4];\n highp vec4 cc_csmViewDir1[4];\n highp vec4 cc_csmViewDir2[4];\n highp vec4 cc_csmAtlas[4];\n highp mat4 cc_matCSMViewProj[4];\n highp vec4 cc_csmProjDepthInfo[4];\n highp vec4 cc_csmProjInfo[4];\n highp vec4 cc_csmSplitsInfo;\n };\n #endif\n #if defined(CC_USE_METAL) || defined(CC_USE_WGPU)\n #define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y) y = -y\n #else\n #define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y)\n #endif\n vec2 GetPlanarReflectScreenUV(vec3 worldPos, mat4 matVirtualCameraViewProj, float flipNDCSign, vec3 viewDir, vec3 reflectDir)\n {\n vec4 clipPos = matVirtualCameraViewProj * vec4(worldPos, 1.0);\n vec2 screenUV = clipPos.xy / clipPos.w * 0.5 + 0.5;\n screenUV = vec2(1.0 - screenUV.x, screenUV.y);\n screenUV = flipNDCSign == 1.0 ? vec2(screenUV.x, 1.0 - screenUV.y) : screenUV;\n return screenUV;\n }\n float GetCameraDepthRH(float depthHS, mat4 matProj)\n {\n return -matProj[3][2] / (depthHS + matProj[2][2]);\n }\n float GetCameraDepthRH(float depthHS, float matProj32, float matProj22)\n {\n return -matProj32 / (depthHS + matProj22);\n }\n vec4 GetWorldPosFromNDCPosRH(vec3 posHS, mat4 matProj, mat4 matViewProjInv)\n {\n float w = -GetCameraDepthRH(posHS.z, matProj);\n return matViewProjInv * vec4(posHS * w, w);\n }\n float GetLinearDepthFromViewSpace(vec3 viewPos, float near, float far) {\n float dist = length(viewPos);\n return (dist - near) / (far - near);\n }\n vec3 RotationVecFromAxisY(vec3 v, float cosTheta, float sinTheta)\n {\n vec3 result;\n result.x = dot(v, vec3(cosTheta, 0.0, -sinTheta));\n result.y = v.y;\n result.z = dot(v, vec3(sinTheta, 0.0, cosTheta));\n return result;\n }\n vec3 RotationVecFromAxisY(vec3 v, float rotateAngleArc)\n {\n return RotationVecFromAxisY(v, cos(rotateAngleArc), sin(rotateAngleArc));\n }\n float CCGetLinearDepth(vec3 worldPos, float viewSpaceBias) {\n \tvec4 viewPos = cc_matLightView * vec4(worldPos.xyz, 1.0);\n viewPos.z += viewSpaceBias;\n \treturn GetLinearDepthFromViewSpace(viewPos.xyz, cc_shadowNFLSInfo.x, cc_shadowNFLSInfo.y);\n }\n float CCGetLinearDepth(vec3 worldPos) {\n \treturn CCGetLinearDepth(worldPos, 0.0);\n }\n #if CC_RECEIVE_SHADOW\n layout(set = 0, binding = 4) uniform highp sampler2D cc_shadowMap;\n layout(set = 0, binding = 6) uniform highp sampler2D cc_spotShadowMap;\n #define UnpackBitFromFloat(value, bit) (mod(floor(value / pow(10.0, float(bit))), 10.0) > 0.0)\n highp float unpackHighpData (float mainPart, float modPart) {\n highp float data = mainPart;\n return data + modPart;\n }\n highp float unpackHighpData (float mainPart, float modPart, const float modValue) {\n highp float data = mainPart * modValue;\n return data + modPart * modValue;\n }\n highp vec2 unpackHighpData (vec2 mainPart, vec2 modPart) {\n highp vec2 data = mainPart;\n return data + modPart;\n }\n highp vec2 unpackHighpData (vec2 mainPart, vec2 modPart, const float modValue) {\n highp vec2 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n highp vec3 unpackHighpData (vec3 mainPart, vec3 modPart) {\n highp vec3 data = mainPart;\n return data + modPart;\n }\n highp vec3 unpackHighpData (vec3 mainPart, vec3 modPart, const float modValue) {\n highp vec3 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n highp vec4 unpackHighpData (vec4 mainPart, vec4 modPart) {\n highp vec4 data = mainPart;\n return data + modPart;\n }\n highp vec4 unpackHighpData (vec4 mainPart, vec4 modPart, const float modValue) {\n highp vec4 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n float NativePCFShadowFactorHard (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n #if CC_SHADOWMAP_FORMAT == 1\n return step(shadowNDCPos.z, dot(texture(shadowMap, shadowNDCPos.xy), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n return step(shadowNDCPos.z, texture(shadowMap, shadowNDCPos.xy).x);\n #endif\n }\n float NativePCFShadowFactorSoft (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n vec2 shadowNDCPos_offset = shadowNDCPos.xy + oneTap;\n float block0, block1, block2, block3;\n #if CC_SHADOWMAP_FORMAT == 1\n block0 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block1 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos_offset.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block0 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)).x);\n block1 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos.y)).x);\n block2 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset.y)).x);\n block3 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos_offset.y)).x);\n #endif\n float coefX = mod(shadowNDCPos.x, oneTap.x) * shadowMapResolution.x;\n float resultX = mix(block0, block1, coefX);\n float resultY = mix(block2, block3, coefX);\n float coefY = mod(shadowNDCPos.y, oneTap.y) * shadowMapResolution.y;\n return mix(resultX, resultY, coefY);\n }\n float NativePCFShadowFactorSoft3X (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n float shadowNDCPos_offset_L = shadowNDCPos.x - oneTap.x;\n float shadowNDCPos_offset_R = shadowNDCPos.x + oneTap.x;\n float shadowNDCPos_offset_U = shadowNDCPos.y - oneTap.y;\n float shadowNDCPos_offset_D = shadowNDCPos.y + oneTap.y;\n float block0, block1, block2, block3, block4, block5, block6, block7, block8;\n #if CC_SHADOWMAP_FORMAT == 1\n block0 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block1 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block4 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block5 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block6 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block7 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block8 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block0 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_U)).x);\n block1 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_U)).x);\n block2 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_U)).x);\n block3 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos.y)).x);\n block4 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)).x);\n block5 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos.y)).x);\n block6 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_D)).x);\n block7 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_D)).x);\n block8 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_D)).x);\n #endif\n float coefX = mod(shadowNDCPos.x, oneTap.x) * shadowMapResolution.x;\n float coefY = mod(shadowNDCPos.y, oneTap.y) * shadowMapResolution.y;\n float shadow = 0.0;\n float resultX = mix(block0, block1, coefX);\n float resultY = mix(block3, block4, coefX);\n shadow += mix(resultX , resultY, coefY);\n resultX = mix(block1, block2, coefX);\n resultY = mix(block4, block5, coefX);\n shadow += mix(resultX , resultY, coefY);\n resultX = mix(block3, block4, coefX);\n resultY = mix(block6, block7, coefX);\n shadow += mix(resultX, resultY, coefY);\n resultX = mix(block4, block5, coefX);\n resultY = mix(block7, block8, coefX);\n shadow += mix(resultX, resultY, coefY);\n return shadow * 0.25;\n }\n float NativePCFShadowFactorSoft5X (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n vec2 twoTap = oneTap * 2.0;\n vec2 offset1 = shadowNDCPos.xy + vec2(-twoTap.x, -twoTap.y);\n vec2 offset2 = shadowNDCPos.xy + vec2(-oneTap.x, -twoTap.y);\n vec2 offset3 = shadowNDCPos.xy + vec2(0.0, -twoTap.y);\n vec2 offset4 = shadowNDCPos.xy + vec2(oneTap.x, -twoTap.y);\n vec2 offset5 = shadowNDCPos.xy + vec2(twoTap.x, -twoTap.y);\n vec2 offset6 = shadowNDCPos.xy + vec2(-twoTap.x, -oneTap.y);\n vec2 offset7 = shadowNDCPos.xy + vec2(-oneTap.x, -oneTap.y);\n vec2 offset8 = shadowNDCPos.xy + vec2(0.0, -oneTap.y);\n vec2 offset9 = shadowNDCPos.xy + vec2(oneTap.x, -oneTap.y);\n vec2 offset10 = shadowNDCPos.xy + vec2(twoTap.x, -oneTap.y);\n vec2 offset11 = shadowNDCPos.xy + vec2(-twoTap.x, 0.0);\n vec2 offset12 = shadowNDCPos.xy + vec2(-oneTap.x, 0.0);\n vec2 offset13 = shadowNDCPos.xy + vec2(0.0, 0.0);\n vec2 offset14 = shadowNDCPos.xy + vec2(oneTap.x, 0.0);\n vec2 offset15 = shadowNDCPos.xy + vec2(twoTap.x, 0.0);\n vec2 offset16 = shadowNDCPos.xy + vec2(-twoTap.x, oneTap.y);\n vec2 offset17 = shadowNDCPos.xy + vec2(-oneTap.x, oneTap.y);\n vec2 offset18 = shadowNDCPos.xy + vec2(0.0, oneTap.y);\n vec2 offset19 = shadowNDCPos.xy + vec2(oneTap.x, oneTap.y);\n vec2 offset20 = shadowNDCPos.xy + vec2(twoTap.x, oneTap.y);\n vec2 offset21 = shadowNDCPos.xy + vec2(-twoTap.x, twoTap.y);\n vec2 offset22 = shadowNDCPos.xy + vec2(-oneTap.x, twoTap.y);\n vec2 offset23 = shadowNDCPos.xy + vec2(0.0, twoTap.y);\n vec2 offset24 = shadowNDCPos.xy + vec2(oneTap.x, twoTap.y);\n vec2 offset25 = shadowNDCPos.xy + vec2(twoTap.x, twoTap.y);\n float block1, block2, block3, block4, block5, block6, block7, block8, block9, block10, block11, block12, block13, block14, block15, block16, block17, block18, block19, block20, block21, block22, block23, block24, block25;\n #if CC_SHADOWMAP_FORMAT == 1\n block1 = step(shadowNDCPos.z, dot(texture(shadowMap, offset1), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture(shadowMap, offset2), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture(shadowMap, offset3), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block4 = step(shadowNDCPos.z, dot(texture(shadowMap, offset4), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block5 = step(shadowNDCPos.z, dot(texture(shadowMap, offset5), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block6 = step(shadowNDCPos.z, dot(texture(shadowMap, offset6), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block7 = step(shadowNDCPos.z, dot(texture(shadowMap, offset7), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block8 = step(shadowNDCPos.z, dot(texture(shadowMap, offset8), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block9 = step(shadowNDCPos.z, dot(texture(shadowMap, offset9), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block10 = step(shadowNDCPos.z, dot(texture(shadowMap, offset10), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block11 = step(shadowNDCPos.z, dot(texture(shadowMap, offset11), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block12 = step(shadowNDCPos.z, dot(texture(shadowMap, offset12), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block13 = step(shadowNDCPos.z, dot(texture(shadowMap, offset13), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block14 = step(shadowNDCPos.z, dot(texture(shadowMap, offset14), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block15 = step(shadowNDCPos.z, dot(texture(shadowMap, offset15), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block16 = step(shadowNDCPos.z, dot(texture(shadowMap, offset16), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block17 = step(shadowNDCPos.z, dot(texture(shadowMap, offset17), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block18 = step(shadowNDCPos.z, dot(texture(shadowMap, offset18), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block19 = step(shadowNDCPos.z, dot(texture(shadowMap, offset19), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block20 = step(shadowNDCPos.z, dot(texture(shadowMap, offset20), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block21 = step(shadowNDCPos.z, dot(texture(shadowMap, offset21), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block22 = step(shadowNDCPos.z, dot(texture(shadowMap, offset22), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block23 = step(shadowNDCPos.z, dot(texture(shadowMap, offset23), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block24 = step(shadowNDCPos.z, dot(texture(shadowMap, offset24), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block25 = step(shadowNDCPos.z, dot(texture(shadowMap, offset25), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block1 = step(shadowNDCPos.z, texture(shadowMap, offset1).x);\n block2 = step(shadowNDCPos.z, texture(shadowMap, offset2).x);\n block3 = step(shadowNDCPos.z, texture(shadowMap, offset3).x);\n block4 = step(shadowNDCPos.z, texture(shadowMap, offset4).x);\n block5 = step(shadowNDCPos.z, texture(shadowMap, offset5).x);\n block6 = step(shadowNDCPos.z, texture(shadowMap, offset6).x);\n block7 = step(shadowNDCPos.z, texture(shadowMap, offset7).x);\n block8 = step(shadowNDCPos.z, texture(shadowMap, offset8).x);\n block9 = step(shadowNDCPos.z, texture(shadowMap, offset9).x);\n block10 = step(shadowNDCPos.z, texture(shadowMap, offset10).x);\n block11 = step(shadowNDCPos.z, texture(shadowMap, offset11).x);\n block12 = step(shadowNDCPos.z, texture(shadowMap, offset12).x);\n block13 = step(shadowNDCPos.z, texture(shadowMap, offset13).x);\n block14 = step(shadowNDCPos.z, texture(shadowMap, offset14).x);\n block15 = step(shadowNDCPos.z, texture(shadowMap, offset15).x);\n block16 = step(shadowNDCPos.z, texture(shadowMap, offset16).x);\n block17 = step(shadowNDCPos.z, texture(shadowMap, offset17).x);\n block18 = step(shadowNDCPos.z, texture(shadowMap, offset18).x);\n block19 = step(shadowNDCPos.z, texture(shadowMap, offset19).x);\n block20 = step(shadowNDCPos.z, texture(shadowMap, offset20).x);\n block21 = step(shadowNDCPos.z, texture(shadowMap, offset21).x);\n block22 = step(shadowNDCPos.z, texture(shadowMap, offset22).x);\n block23 = step(shadowNDCPos.z, texture(shadowMap, offset23).x);\n block24 = step(shadowNDCPos.z, texture(shadowMap, offset24).x);\n block25 = step(shadowNDCPos.z, texture(shadowMap, offset25).x);\n #endif\n vec2 coef = fract(shadowNDCPos.xy * shadowMapResolution);\n vec2 v1X1 = mix(vec2(block1, block6), vec2(block2, block7), coef.xx);\n vec2 v1X2 = mix(vec2(block2, block7), vec2(block3, block8), coef.xx);\n vec2 v1X3 = mix(vec2(block3, block8), vec2(block4, block9), coef.xx);\n vec2 v1X4 = mix(vec2(block4, block9), vec2(block5, block10), coef.xx);\n float v1 = mix(v1X1.x, v1X1.y, coef.y) + mix(v1X2.x, v1X2.y, coef.y) + mix(v1X3.x, v1X3.y, coef.y) + mix(v1X4.x, v1X4.y, coef.y);\n vec2 v2X1 = mix(vec2(block6, block11), vec2(block7, block12), coef.xx);\n vec2 v2X2 = mix(vec2(block7, block12), vec2(block8, block13), coef.xx);\n vec2 v2X3 = mix(vec2(block8, block13), vec2(block9, block14), coef.xx);\n vec2 v2X4 = mix(vec2(block9, block14), vec2(block10, block15), coef.xx);\n float v2 = mix(v2X1.x, v2X1.y, coef.y) + mix(v2X2.x, v2X2.y, coef.y) + mix(v2X3.x, v2X3.y, coef.y) + mix(v2X4.x, v2X4.y, coef.y);\n vec2 v3X1 = mix(vec2(block11, block16), vec2(block12, block17), coef.xx);\n vec2 v3X2 = mix(vec2(block12, block17), vec2(block13, block18), coef.xx);\n vec2 v3X3 = mix(vec2(block13, block18), vec2(block14, block19), coef.xx);\n vec2 v3X4 = mix(vec2(block14, block19), vec2(block15, block20), coef.xx);\n float v3 = mix(v3X1.x, v3X1.y, coef.y) + mix(v3X2.x, v3X2.y, coef.y) + mix(v3X3.x, v3X3.y, coef.y) + mix(v3X4.x, v3X4.y, coef.y);\n vec2 v4X1 = mix(vec2(block16, block21), vec2(block17, block22), coef.xx);\n vec2 v4X2 = mix(vec2(block17, block22), vec2(block18, block23), coef.xx);\n vec2 v4X3 = mix(vec2(block18, block23), vec2(block19, block24), coef.xx);\n vec2 v4X4 = mix(vec2(block19, block24), vec2(block20, block25), coef.xx);\n float v4 = mix(v4X1.x, v4X1.y, coef.y) + mix(v4X2.x, v4X2.y, coef.y) + mix(v4X3.x, v4X3.y, coef.y) + mix(v4X4.x, v4X4.y, coef.y);\n float fAvg = (v1 + v2 + v3 + v4) * 0.0625;\n return fAvg;\n }\n bool GetShadowNDCPos(out vec3 shadowNDCPos, vec4 shadowPosWithDepthBias)\n {\n \tshadowNDCPos = shadowPosWithDepthBias.xyz / shadowPosWithDepthBias.w * 0.5 + 0.5;\n \tif (shadowNDCPos.x < 0.0 || shadowNDCPos.x > 1.0 ||\n \t\tshadowNDCPos.y < 0.0 || shadowNDCPos.y > 1.0 ||\n \t\tshadowNDCPos.z < 0.0 || shadowNDCPos.z > 1.0) {\n \t\treturn false;\n \t}\n \tshadowNDCPos.xy = cc_cameraPos.w == 1.0 ? vec2(shadowNDCPos.xy.x, 1.0 - shadowNDCPos.xy.y) : shadowNDCPos.xy;\n \treturn true;\n }\n vec4 ApplyShadowDepthBias_FaceNormal(vec4 shadowPos, vec3 worldNormal, float normalBias, vec3 matViewDir0, vec3 matViewDir1, vec3 matViewDir2, vec2 projScaleXY)\n {\n vec4 newShadowPos = shadowPos;\n if (normalBias > EPSILON_LOWP)\n {\n vec3 viewNormal = vec3(dot(matViewDir0, worldNormal), dot(matViewDir1, worldNormal), dot(matViewDir2, worldNormal));\n if (viewNormal.z < 0.1)\n newShadowPos.xy += viewNormal.xy * projScaleXY * normalBias * clamp(viewNormal.z, 0.001, 0.1);\n }\n return newShadowPos;\n }\n vec4 ApplyShadowDepthBias_FaceNormal(vec4 shadowPos, vec3 worldNormal, float normalBias, mat4 matLightView, vec2 projScaleXY)\n {\n \tvec4 newShadowPos = shadowPos;\n \tif (normalBias > EPSILON_LOWP)\n \t{\n \t\tvec4 viewNormal = matLightView * vec4(worldNormal, 0.0);\n \t\tif (viewNormal.z < 0.1)\n \t\t\tnewShadowPos.xy += viewNormal.xy * projScaleXY * normalBias * clamp(viewNormal.z, 0.001, 0.1);\n \t}\n \treturn newShadowPos;\n }\n float GetViewSpaceDepthFromNDCDepth_Orthgraphic(float NDCDepth, float projScaleZ, float projBiasZ)\n {\n \treturn (NDCDepth - projBiasZ) / projScaleZ;\n }\n float GetViewSpaceDepthFromNDCDepth_Perspective(float NDCDepth, float homogenousDividW, float invProjScaleZ, float invProjBiasZ)\n {\n \treturn NDCDepth * invProjScaleZ + homogenousDividW * invProjBiasZ;\n }\n vec4 ApplyShadowDepthBias_Perspective(vec4 shadowPos, float viewspaceDepthBias)\n {\n \tvec3 viewSpacePos;\n \tviewSpacePos.xy = shadowPos.xy * cc_shadowProjInfo.zw;\n \tviewSpacePos.z = GetViewSpaceDepthFromNDCDepth_Perspective(shadowPos.z, shadowPos.w, cc_shadowInvProjDepthInfo.x, cc_shadowInvProjDepthInfo.y);\n \tviewSpacePos.xyz += cc_shadowProjDepthInfo.z * normalize(viewSpacePos.xyz) * viewspaceDepthBias;\n \tvec4 clipSpacePos;\n \tclipSpacePos.xy = viewSpacePos.xy * cc_shadowProjInfo.xy;\n \tclipSpacePos.zw = viewSpacePos.z * cc_shadowProjDepthInfo.xz + vec2(cc_shadowProjDepthInfo.y, 0.0);\n \t#if CC_SHADOWMAP_USE_LINEAR_DEPTH\n \t\tclipSpacePos.z = GetLinearDepthFromViewSpace(viewSpacePos.xyz, cc_shadowNFLSInfo.x, cc_shadowNFLSInfo.y);\n \t\tclipSpacePos.z = (clipSpacePos.z * 2.0 - 1.0) * clipSpacePos.w;\n \t#endif\n \treturn clipSpacePos;\n }\n vec4 ApplyShadowDepthBias_Orthographic(vec4 shadowPos, float viewspaceDepthBias, float projScaleZ, float projBiasZ)\n {\n \tfloat coeffA = projScaleZ;\n \tfloat coeffB = projBiasZ;\n \tfloat viewSpacePos_z = GetViewSpaceDepthFromNDCDepth_Orthgraphic(shadowPos.z, projScaleZ, projBiasZ);\n \tviewSpacePos_z += viewspaceDepthBias;\n \tvec4 result = shadowPos;\n \tresult.z = viewSpacePos_z * coeffA + coeffB;\n \treturn result;\n }\n vec4 ApplyShadowDepthBias_PerspectiveLinearDepth(vec4 shadowPos, float viewspaceDepthBias, vec3 worldPos)\n {\n shadowPos.z = CCGetLinearDepth(worldPos, viewspaceDepthBias) * 2.0 - 1.0;\n shadowPos.z *= shadowPos.w;\n return shadowPos;\n }\n float CCGetDirLightShadowFactorHard (vec4 shadowPosWithDepthBias) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorHard(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft (vec4 shadowPosWithDepthBias) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft3X (vec4 shadowPosWithDepthBias) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft3X(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft5X (vec4 shadowPosWithDepthBias) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft5X(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetSpotLightShadowFactorHard (vec4 shadowPosWithDepthBias, vec3 worldPos) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorHard(shadowNDCPos, cc_spotShadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetSpotLightShadowFactorSoft (vec4 shadowPosWithDepthBias, vec3 worldPos) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft(shadowNDCPos, cc_spotShadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetSpotLightShadowFactorSoft3X (vec4 shadowPosWithDepthBias, vec3 worldPos) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft3X(shadowNDCPos, cc_spotShadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetSpotLightShadowFactorSoft5X (vec4 shadowPosWithDepthBias, vec3 worldPos) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft5X(shadowNDCPos, cc_spotShadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCSpotShadowFactorBase(out vec4 shadowPosWithDepthBias, vec4 shadowPos, vec3 worldPos, vec2 shadowBias)\n {\n float pcf = cc_shadowWHPBInfo.z;\n vec4 pos = vec4(1.0);\n #if CC_SHADOWMAP_USE_LINEAR_DEPTH\n pos = ApplyShadowDepthBias_PerspectiveLinearDepth(shadowPos, shadowBias.x, worldPos);\n #else\n pos = ApplyShadowDepthBias_Perspective(shadowPos, shadowBias.x);\n #endif\n float realtimeShadow = 1.0;\n if (pcf > 2.9) {\n realtimeShadow = CCGetSpotLightShadowFactorSoft5X(pos, worldPos);\n }else if (pcf > 1.9) {\n realtimeShadow = CCGetSpotLightShadowFactorSoft3X(pos, worldPos);\n }else if (pcf > 0.9) {\n realtimeShadow = CCGetSpotLightShadowFactorSoft(pos, worldPos);\n }else {\n realtimeShadow = CCGetSpotLightShadowFactorHard(pos, worldPos);\n }\n shadowPosWithDepthBias = pos;\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n }\n float CCShadowFactorBase(out vec4 shadowPosWithDepthBias, vec4 shadowPos, vec3 N, vec2 shadowBias)\n {\n vec4 pos = ApplyShadowDepthBias_FaceNormal(shadowPos, N, shadowBias.y, cc_matLightView, cc_shadowProjInfo.xy);\n pos = ApplyShadowDepthBias_Orthographic(pos, shadowBias.x, cc_shadowProjDepthInfo.x, cc_shadowProjDepthInfo.y);\n float realtimeShadow = 1.0;\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n realtimeShadow = CCGetDirLightShadowFactorSoft5X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n realtimeShadow = CCGetDirLightShadowFactorSoft3X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n realtimeShadow = CCGetDirLightShadowFactorSoft(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n realtimeShadow = CCGetDirLightShadowFactorHard(pos);\n #endif\n shadowPosWithDepthBias = pos;\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n }\n #if CC_SUPPORT_CASCADED_SHADOW_MAP\n bool CCGetCSMLevelWithTransition(out highp float ratio, vec3 clipPos) {\n highp float maxRange = 1.0 - cc_csmSplitsInfo.x;\n highp float minRange = cc_csmSplitsInfo.x;\n highp float thresholdInvert = 1.0 / cc_csmSplitsInfo.x;\n ratio = 0.0;\n if (clipPos.x <= minRange) {\n ratio = clipPos.x * thresholdInvert;\n return true;\n }\n if (clipPos.x >= maxRange) {\n ratio = 1.0 - (clipPos.x - maxRange) * thresholdInvert;\n return true;\n }\n if (clipPos.y <= minRange) {\n ratio = clipPos.y * thresholdInvert;\n return true;\n }\n if (clipPos.y >= maxRange) {\n ratio = 1.0 - (clipPos.y - maxRange) * thresholdInvert;\n return true;\n }\n return false;\n }\n bool CCHasCSMLevel(int level, vec3 worldPos) {\n highp float layerThreshold = cc_csmViewDir0[0].w;\n bool hasLevel = false;\n for (int i = 0; i < 4; i++) {\n if (i == level) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0) {\n hasLevel = true;\n }\n }\n }\n return hasLevel;\n }\n void CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos, int level) {\n highp float layerThreshold = cc_csmViewDir0[0].w;\n for (int i = 0; i < 4; i++) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0 && i == level) {\n csmPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n csmPos.xy = csmPos.xy * cc_csmAtlas[i].xy + cc_csmAtlas[i].zw;\n shadowProjDepthInfo = cc_csmProjDepthInfo[i];\n shadowProjInfo = cc_csmProjInfo[i];\n shadowViewDir0 = cc_csmViewDir0[i].xyz;\n shadowViewDir1 = cc_csmViewDir1[i].xyz;\n shadowViewDir2 = cc_csmViewDir2[i].xyz;\n }\n }\n }\n int CCGetCSMLevel(out bool isTransitionArea, out highp float transitionRatio, out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos)\n {\n int level = -1;\n highp float layerThreshold = cc_csmViewDir0[0].w;\n for (int i = 0; i < 4; i++) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0 && level < 0) {\n #if CC_CASCADED_LAYERS_TRANSITION\n isTransitionArea = CCGetCSMLevelWithTransition(transitionRatio, clipPos);\n #endif\n csmPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n csmPos.xy = csmPos.xy * cc_csmAtlas[i].xy + cc_csmAtlas[i].zw;\n shadowProjDepthInfo = cc_csmProjDepthInfo[i];\n shadowProjInfo = cc_csmProjInfo[i];\n shadowViewDir0 = cc_csmViewDir0[i].xyz;\n shadowViewDir1 = cc_csmViewDir1[i].xyz;\n shadowViewDir2 = cc_csmViewDir2[i].xyz;\n level = i;\n }\n }\n return level;\n }\n int CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos)\n {\n bool isTransitionArea = false;\n highp float transitionRatio = 0.0;\n return CCGetCSMLevel(isTransitionArea, transitionRatio, csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n }\n float CCCSMFactorBase(out vec4 csmPos, out vec4 csmPosWithBias, vec3 worldPos, vec3 N, vec2 shadowBias)\n {\n bool isTransitionArea = false;\n highp float ratio = 0.0;\n csmPos = vec4(1.0);\n vec4 shadowProjDepthInfo, shadowProjInfo;\n vec3 shadowViewDir0, shadowViewDir1, shadowViewDir2;\n int level = -1;\n #if CC_CASCADED_LAYERS_TRANSITION\n level = CCGetCSMLevel(isTransitionArea, ratio, csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n #else\n level = CCGetCSMLevel(csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n #endif\n if (level < 0) { return 1.0; }\n vec4 pos = ApplyShadowDepthBias_FaceNormal(csmPos, N, shadowBias.y, shadowViewDir0, shadowViewDir1, shadowViewDir2, shadowProjInfo.xy);\n pos = ApplyShadowDepthBias_Orthographic(pos, shadowBias.x, shadowProjDepthInfo.x, shadowProjDepthInfo.y);\n csmPosWithBias = pos;\n float realtimeShadow = 1.0;\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n realtimeShadow = CCGetDirLightShadowFactorSoft5X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n realtimeShadow = CCGetDirLightShadowFactorSoft3X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n realtimeShadow = CCGetDirLightShadowFactorSoft(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n realtimeShadow = CCGetDirLightShadowFactorHard(pos);\n #endif\n #if CC_CASCADED_LAYERS_TRANSITION\n vec4 nextCSMPos = vec4(1.0);\n vec4 nextShadowProjDepthInfo, nextShadowProjInfo;\n vec3 nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2;\n float nextRealtimeShadow = 1.0;\n CCGetCSMLevel(nextCSMPos, nextShadowProjDepthInfo, nextShadowProjInfo, nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2, worldPos, level + 1);\n bool hasNextLevel = CCHasCSMLevel(level + 1, worldPos);\n if (hasNextLevel && isTransitionArea) {\n vec4 nexPos = ApplyShadowDepthBias_FaceNormal(nextCSMPos, N, shadowBias.y, nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2, nextShadowProjInfo.xy);\n nexPos = ApplyShadowDepthBias_Orthographic(nexPos, shadowBias.x, nextShadowProjDepthInfo.x, nextShadowProjDepthInfo.y);\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft5X(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft3X(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n nextRealtimeShadow = CCGetDirLightShadowFactorHard(nexPos);\n #endif\n return mix(mix(nextRealtimeShadow, realtimeShadow, ratio), 1.0, cc_shadowNFLSInfo.w);\n }\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n #else\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n #endif\n }\n #else\n int CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos) {\n return -1;\n }\n float CCCSMFactorBase(out vec4 csmPos, out vec4 csmPosWithBias, vec3 worldPos, vec3 N, vec2 shadowBias) {\n csmPos = cc_matLightViewProj * vec4(worldPos, 1.0);\n return CCShadowFactorBase(csmPosWithBias, csmPos, N, shadowBias);\n }\n #endif\n float CCShadowFactorBase(vec4 shadowPos, vec3 N, vec2 shadowBias) {\n vec4 shadowPosWithDepthBias;\n return CCShadowFactorBase(shadowPosWithDepthBias, shadowPos, N, shadowBias);\n }\n float CCCSMFactorBase(vec3 worldPos, vec3 N, vec2 shadowBias) {\n vec4 csmPos, csmPosWithBias;\n return CCCSMFactorBase(csmPos, csmPosWithBias, worldPos, N, shadowBias);\n }\n float CCSpotShadowFactorBase(vec4 shadowPos, vec3 worldPos, vec2 shadowBias)\n {\n vec4 shadowPosWithDepthBias;\n return CCSpotShadowFactorBase(shadowPosWithDepthBias, shadowPos, worldPos, shadowBias);\n }\n #endif\n highp float decode32 (highp vec4 rgba) {\n rgba = rgba * 255.0;\n highp float Sign = 1.0 - (step(128.0, (rgba[3]) + 0.5)) * 2.0;\n highp float Exponent = 2.0 * (mod(float(int((rgba[3]) + 0.5)), 128.0)) + (step(128.0, (rgba[2]) + 0.5)) - 127.0;\n highp float Mantissa = (mod(float(int((rgba[2]) + 0.5)), 128.0)) * 65536.0 + rgba[1] * 256.0 + rgba[0] + 8388608.0;\n return Sign * exp2(Exponent - 23.0) * Mantissa;\n }\n vec4 packRGBE (vec3 rgb) {\n highp float maxComp = max(max(rgb.r, rgb.g), rgb.b);\n highp float e = 128.0;\n if (maxComp > 0.0001) {\n e = log(maxComp) / log(1.1);\n e = ceil(e);\n e = clamp(e + 128.0, 0.0, 255.0);\n }\n highp float sc = 1.0 / pow(1.1, e - 128.0);\n vec3 encode = clamp(rgb * sc, vec3(0.0), vec3(1.0)) * 255.0;\n vec3 encode_rounded = floor(encode) + step(encode - floor(encode), vec3(0.5));\n return vec4(encode_rounded, e) / 255.0;\n }\n vec3 unpackRGBE (vec4 rgbe) {\n return rgbe.rgb * pow(1.1, rgbe.a * 255.0 - 128.0);\n }\n vec4 fragTextureLod (sampler2D tex, vec2 coord, float lod) {\n return textureLod(tex, coord, lod);\n }\n vec4 fragTextureLod (samplerCube tex, vec3 coord, float lod) {\n return textureLod(tex, coord, lod);\n }\n layout(set = 0, binding = 5) uniform samplerCube cc_environment;\n vec3 CalculateReflectDirection(vec3 N, vec3 V, float NoV)\n {\n float sideSign = NoV < 0.0 ? -1.0 : 1.0;\n N *= sideSign;\n return reflect(-V, N);\n }\n vec3 CalculatePlanarReflectPositionOnPlane(vec3 N, vec3 V, vec3 worldPos, vec4 plane, vec3 cameraPos, float probeReflectedDepth)\n {\n float distPixelToPlane = -dot(plane, vec4(worldPos, 1.0));\n plane.w += distPixelToPlane;\n float distCameraToPlane = abs(-dot(plane, vec4(cameraPos, 1.0)));\n vec3 planeN = plane.xyz;\n vec3 virtualCameraPos = cameraPos - 2.0 * distCameraToPlane * planeN;\n vec3 bumpedR = normalize(reflect(-V, N));\n vec3 reflectedPointPos = worldPos + probeReflectedDepth * bumpedR;\n vec3 virtualCameraToReflectedPoint = normalize(reflectedPointPos - virtualCameraPos);\n float y = distCameraToPlane / max(EPSILON_LOWP, dot(planeN, virtualCameraToReflectedPoint));\n return virtualCameraPos + y * virtualCameraToReflectedPoint;\n }\n vec4 CalculateBoxProjectedDirection(vec3 R, vec3 worldPos, vec3 cubeCenterPos, vec3 cubeBoxHalfSize)\n {\n vec3 W = worldPos - cubeCenterPos;\n vec3 projectedLength = (sign(R) * cubeBoxHalfSize - W) / (R + vec3(EPSILON));\n float len = min(min(projectedLength.x, projectedLength.y), projectedLength.z);\n vec3 P = W + len * R;\n float weight = len < 0.0 ? 0.0 : 1.0;\n return vec4(P, weight);\n }\n #if CC_USE_IBL\n #if CC_USE_DIFFUSEMAP\n layout(set = 0, binding = 7) uniform samplerCube cc_diffuseMap;\n #endif\n #endif\n #if CC_USE_REFLECTION_PROBE\n layout(set = 2, binding = 15) uniform samplerCube cc_reflectionProbeCubemap;\n layout(set = 2, binding = 16) uniform sampler2D cc_reflectionProbePlanarMap;\n layout(set = 2, binding = 17) uniform sampler2D cc_reflectionProbeDataMap;\n layout(set = 2, binding = 18) uniform samplerCube cc_reflectionProbeBlendCubemap;\n layout(set = 2, binding = 0) uniform CCLocal {\n highp mat4 cc_matWorld;\n highp mat4 cc_matWorldIT;\n highp vec4 cc_lightingMapUVParam;\n highp vec4 cc_localShadowBias;\n highp vec4 cc_reflectionProbeData1;\n highp vec4 cc_reflectionProbeData2;\n highp vec4 cc_reflectionProbeBlendData1;\n highp vec4 cc_reflectionProbeBlendData2;\n };\n vec4 GetTexData(sampler2D dataMap, float dataMapWidth, float x, float uv_y)\n {\n return vec4(\n decode32(texture(dataMap, vec2(((x + 0.5)/dataMapWidth), uv_y))),\n decode32(texture(dataMap, vec2(((x + 1.5)/dataMapWidth), uv_y))),\n decode32(texture(dataMap, vec2(((x + 2.5)/dataMapWidth), uv_y))),\n decode32(texture(dataMap, vec2(((x + 3.5)/dataMapWidth), uv_y)))\n );\n }\n void GetPlanarReflectionProbeData(out vec4 plane, out float planarReflectionDepthScale, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n plane.xyz = texData1.xyz;\n plane.w = texData2.x;\n planarReflectionDepthScale = texData2.y;\n mipCount = texData2.z;\n #else\n plane = cc_reflectionProbeData1;\n planarReflectionDepthScale = cc_reflectionProbeData2.x;\n mipCount = cc_reflectionProbeData2.w;\n #endif\n }\n void GetCubeReflectionProbeData(out vec3 centerPos, out vec3 boxHalfSize, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n centerPos = texData1.xyz;\n boxHalfSize = texData2.xyz;\n mipCount = texData3.x;\n #else\n centerPos = cc_reflectionProbeData1.xyz;\n boxHalfSize = cc_reflectionProbeData2.xyz;\n mipCount = cc_reflectionProbeData2.w;\n #endif\n if (mipCount > 1000.0) mipCount -= 1000.0;\n }\n bool isReflectProbeUsingRGBE(float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n return texData3.x > 1000.0;\n #else\n return cc_reflectionProbeData2.w > 1000.0;\n #endif\n }\n bool isBlendReflectProbeUsingRGBE(float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n return texData3.x > 1000.0;\n #else\n return cc_reflectionProbeBlendData2.w > 1000.0;\n #endif\n }\n void GetBlendCubeReflectionProbeData(out vec3 centerPos, out vec3 boxHalfSize, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n centerPos = texData1.xyz;\n boxHalfSize = texData2.xyz;\n mipCount = texData3.x;\n #else\n centerPos = cc_reflectionProbeBlendData1.xyz;\n boxHalfSize = cc_reflectionProbeBlendData2.xyz;\n mipCount = cc_reflectionProbeBlendData2.w;\n #endif\n if (mipCount > 1000.0) mipCount -= 1000.0;\n }\n #endif\n #if CC_USE_LIGHT_PROBE\n #if CC_USE_LIGHT_PROBE\n #if USE_INSTANCING\n layout(location = 1) in mediump vec4 v_sh_linear_const_r;\n layout(location = 2) in mediump vec4 v_sh_linear_const_g;\n layout(location = 3) in mediump vec4 v_sh_linear_const_b;\n #else\n layout(set = 2, binding = 6) uniform CCSH {\n vec4 cc_sh_linear_const_r;\n vec4 cc_sh_linear_const_g;\n vec4 cc_sh_linear_const_b;\n vec4 cc_sh_quadratic_r;\n vec4 cc_sh_quadratic_g;\n vec4 cc_sh_quadratic_b;\n vec4 cc_sh_quadratic_a;\n };\n #endif\n #if CC_USE_LIGHT_PROBE\n vec3 SHEvaluate(vec3 normal)\n {\n vec3 result;\n #if USE_INSTANCING\n vec4 normal4 = vec4(normal, 1.0);\n result.r = dot(v_sh_linear_const_r, normal4);\n result.g = dot(v_sh_linear_const_g, normal4);\n result.b = dot(v_sh_linear_const_b, normal4);\n #else\n vec4 normal4 = vec4(normal, 1.0);\n result.r = dot(cc_sh_linear_const_r, normal4);\n result.g = dot(cc_sh_linear_const_g, normal4);\n result.b = dot(cc_sh_linear_const_b, normal4);\n vec4 n14 = normal.xyzz * normal.yzzx;\n float n5 = normal.x * normal.x - normal.y * normal.y;\n result.r += dot(cc_sh_quadratic_r, n14);\n result.g += dot(cc_sh_quadratic_g, n14);\n result.b += dot(cc_sh_quadratic_b, n14);\n result += (cc_sh_quadratic_a.rgb * n5);\n #endif\n #if CC_USE_HDR\n result *= cc_exposure.w * cc_exposure.x;\n #endif\n return result;\n }\n #endif\n #endif\n #endif\n float GGXMobile (float roughness, float NoH, vec3 H, vec3 N) {\n vec3 NxH = cross(N, H);\n float OneMinusNoHSqr = dot(NxH, NxH);\n float a = roughness * roughness;\n float n = NoH * a;\n float p = a / max(EPSILON, OneMinusNoHSqr + n * n);\n return p * p;\n }\n float CalcSpecular (float roughness, float NoH, vec3 H, vec3 N) {\n return (roughness * 0.25 + 0.25) * GGXMobile(roughness, NoH, H, N);\n }\n vec3 BRDFApprox (vec3 specular, float roughness, float NoV) {\n const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);\n const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);\n vec4 r = roughness * c0 + c1;\n float a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y;\n vec2 AB = vec2(-1.04, 1.04) * a004 + r.zw;\n AB.y *= clamp(50.0 * specular.g, 0.0, 1.0);\n return max(vec3(0.0), specular * AB.x + AB.y);\n }\n #if USE_REFLECTION_DENOISE\n vec3 GetEnvReflectionWithMipFiltering(vec3 R, float roughness, float mipCount, float denoiseIntensity, vec2 screenUV) {\n #if CC_USE_IBL\n \tfloat mip = roughness * (mipCount - 1.0);\n \tfloat delta = (dot(dFdx(R), dFdy(R))) * 1000.0;\n \tfloat mipBias = mix(0.0, 5.0, clamp(delta, 0.0, 1.0));\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_CUBE\n vec4 biased = fragTextureLod(cc_reflectionProbeCubemap, R, mip + mipBias);\n \t vec4 filtered = texture(cc_reflectionProbeCubemap, R);\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_PLANAR\n vec4 biased = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, mip + mipBias);\n vec4 filtered = texture(cc_reflectionProbePlanarMap, screenUV);\n #else\n vec4 biased = fragTextureLod(cc_environment, R, mip + mipBias);\n \t vec4 filtered = texture(cc_environment, R);\n #endif\n #if CC_USE_IBL == 2 || CC_USE_REFLECTION_PROBE != REFLECTION_PROBE_TYPE_NONE\n biased.rgb = unpackRGBE(biased);\n \tfiltered.rgb = unpackRGBE(filtered);\n #else\n \tbiased.rgb = SRGBToLinear(biased.rgb);\n \tfiltered.rgb = SRGBToLinear(filtered.rgb);\n #endif\n return mix(biased.rgb, filtered.rgb, denoiseIntensity);\n #else\n return vec3(0.0, 0.0, 0.0);\n #endif\n }\n #endif\n struct StandardSurface {\n vec4 albedo;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n vec3 position, position_fract_part;\n #else\n vec3 position;\n #endif\n vec3 normal;\n vec3 emissive;\n vec4 lightmap;\n float lightmap_test;\n float roughness;\n float metallic;\n float occlusion;\n float specularIntensity;\n #if CC_RECEIVE_SHADOW\n vec2 shadowBias;\n #endif\n #if CC_RECEIVE_SHADOW || CC_USE_REFLECTION_PROBE\n float reflectionProbeId;\n #endif\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND || CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n float reflectionProbeBlendId;\n float reflectionProbeBlendFactor;\n #endif\n };\n vec3 SampleReflectionProbe(samplerCube tex, vec3 R, float roughness, float mipCount, bool isRGBE) {\n vec4 envmap = fragTextureLod(tex, R, roughness * (mipCount - 1.0));\n if (isRGBE)\n return unpackRGBE(envmap);\n else\n return SRGBToLinear(envmap.rgb);\n }\n vec4 CCStandardShadingBase (StandardSurface s, vec4 shadowPos) {\n vec3 diffuse = s.albedo.rgb * (1.0 - s.metallic);\n vec3 specular = mix(vec3(0.08 * s.specularIntensity), s.albedo.rgb, s.metallic);\n vec3 position;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n position = unpackHighpData(s.position, s.position_fract_part);\n #else\n position = s.position;\n #endif\n vec3 N = normalize(s.normal);\n vec3 V = normalize(cc_cameraPos.xyz - position);\n vec3 L = normalize(-cc_mainLitDir.xyz);\n float NL = max(dot(N, L), 0.0);\n float shadow = 1.0;\n #if CC_RECEIVE_SHADOW && CC_SHADOW_TYPE == 2\n if (NL > 0.0 && cc_mainLitDir.w > 0.0) {\n #if CC_DIR_LIGHT_SHADOW_TYPE == 2\n shadow = CCCSMFactorBase(position, N, s.shadowBias);\n #endif\n #if CC_DIR_LIGHT_SHADOW_TYPE == 1\n shadow = CCShadowFactorBase(shadowPos, N, s.shadowBias);\n #endif\n }\n #endif\n vec3 finalColor = vec3(0.0);\n #if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n vec3 lightmap = s.lightmap.rgb;\n #if CC_USE_HDR\n lightmap.rgb *= cc_exposure.w * cc_exposure.x;\n #endif\n #if CC_USE_LIGHTMAP == LIGHT_MAP_TYPE_INDIRECT_OCCLUSION\n shadow *= s.lightmap.a;\n finalColor += diffuse * lightmap.rgb;\n #else\n finalColor += diffuse * lightmap.rgb * shadow;\n #endif\n s.occlusion *= s.lightmap_test;\n #endif\n #if !CC_DISABLE_DIRECTIONAL_LIGHT\n float NV = max(abs(dot(N, V)), 0.0);\n specular = BRDFApprox(specular, s.roughness, NV);\n vec3 H = normalize(L + V);\n float NH = max(dot(N, H), 0.0);\n vec3 lightingColor = NL * cc_mainLitColor.rgb * cc_mainLitColor.w;\n vec3 diffuseContrib = diffuse / PI;\n vec3 specularContrib = specular * CalcSpecular(s.roughness, NH, H, N);\n vec3 dirlightContrib = (diffuseContrib + specularContrib);\n dirlightContrib *= shadow;\n finalColor += lightingColor * dirlightContrib;\n #endif\n float fAmb = max(EPSILON, 0.5 - N.y * 0.5);\n vec3 ambDiff = mix(cc_ambientSky.rgb, cc_ambientGround.rgb, fAmb);\n vec3 env = vec3(0.0), rotationDir;\n #if CC_USE_IBL\n #if CC_USE_DIFFUSEMAP && !CC_USE_LIGHT_PROBE\n rotationDir = RotationVecFromAxisY(N.xyz, cc_surfaceTransform.z, cc_surfaceTransform.w);\n vec4 diffuseMap = texture(cc_diffuseMap, rotationDir);\n #if CC_USE_DIFFUSEMAP == 2\n ambDiff = unpackRGBE(diffuseMap);\n #else\n ambDiff = SRGBToLinear(diffuseMap.rgb);\n #endif\n #endif\n #if !CC_USE_REFLECTION_PROBE\n vec3 R = normalize(reflect(-V, N));\n rotationDir = RotationVecFromAxisY(R.xyz, cc_surfaceTransform.z, cc_surfaceTransform.w);\n #if USE_REFLECTION_DENOISE && !CC_IBL_CONVOLUTED\n env = GetEnvReflectionWithMipFiltering(rotationDir, s.roughness, cc_ambientGround.w, 0.6, vec2(0.0));\n #else\n vec4 envmap = fragTextureLod(cc_environment, rotationDir, s.roughness * (cc_ambientGround.w - 1.0));\n #if CC_USE_IBL == 2\n env = unpackRGBE(envmap);\n #else\n env = SRGBToLinear(envmap.rgb);\n #endif\n #endif\n #endif\n #endif\n float lightIntensity = cc_ambientSky.w;\n #if CC_USE_REFLECTION_PROBE\n vec4 probe = vec4(0.0);\n vec3 R = normalize(reflect(-V, N));\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_CUBE\n if(s.reflectionProbeId < 0.0){\n env = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2);\n }else{\n vec3 centerPos, boxHalfSize;\n float mipCount;\n GetCubeReflectionProbeData(centerPos, boxHalfSize, mipCount, s.reflectionProbeId);\n vec4 fixedR = CalculateBoxProjectedDirection(R, position, centerPos, boxHalfSize);\n env = mix(SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2) * lightIntensity,\n SampleReflectionProbe(cc_reflectionProbeCubemap, fixedR.xyz, s.roughness, mipCount, isReflectProbeUsingRGBE(s.reflectionProbeId)), fixedR.w);\n }\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_PLANAR\n if(s.reflectionProbeId < 0.0){\n vec2 screenUV = GetPlanarReflectScreenUV(s.position, cc_matViewProj, cc_cameraPos.w, V, R);\n probe = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, 1.0);\n }else{\n vec4 plane;\n float planarReflectionDepthScale, mipCount;\n GetPlanarReflectionProbeData(plane, planarReflectionDepthScale, mipCount, s.reflectionProbeId);\n R = normalize(CalculateReflectDirection(N, V, max(abs(dot(N, V)), 0.0)));\n vec3 worldPosOffset = CalculatePlanarReflectPositionOnPlane(N, V, s.position, plane, cc_cameraPos.xyz, planarReflectionDepthScale);\n vec2 screenUV = GetPlanarReflectScreenUV(worldPosOffset, cc_matViewProj, cc_cameraPos.w, V, R);\n probe = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, mipCount);\n }\n env = unpackRGBE(probe);\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND || CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n if (s.reflectionProbeId < 0.0) {\n env = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2);\n } else {\n vec3 centerPos, boxHalfSize;\n float mipCount;\n GetCubeReflectionProbeData(centerPos, boxHalfSize, mipCount, s.reflectionProbeId);\n vec4 fixedR = CalculateBoxProjectedDirection(R, s.position, centerPos, boxHalfSize);\n env = SampleReflectionProbe(cc_reflectionProbeCubemap, fixedR.xyz, s.roughness, mipCount, isReflectProbeUsingRGBE(s.reflectionProbeId));\n if (s.reflectionProbeBlendId < 0.0) {\n vec3 skyBoxEnv = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2) * lightIntensity;\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n env = mix(env, skyBoxEnv, s.reflectionProbeBlendFactor);\n #else\n env = mix(skyBoxEnv, env, fixedR.w);\n #endif\n } else {\n vec3 centerPosBlend, boxHalfSizeBlend;\n float mipCountBlend;\n GetBlendCubeReflectionProbeData(centerPosBlend, boxHalfSizeBlend, mipCountBlend, s.reflectionProbeBlendId);\n vec4 fixedRBlend = CalculateBoxProjectedDirection(R, s.position, centerPosBlend, boxHalfSizeBlend);\n vec3 probe1 = SampleReflectionProbe(cc_reflectionProbeBlendCubemap, fixedRBlend.xyz, s.roughness, mipCountBlend, isBlendReflectProbeUsingRGBE(s.reflectionProbeBlendId));\n env = mix(env, probe1, s.reflectionProbeBlendFactor);\n }\n }\n #endif\n #endif\n #if CC_USE_REFLECTION_PROBE\n lightIntensity = s.reflectionProbeId < 0.0 ? lightIntensity : 1.0;\n #endif\n finalColor += env * lightIntensity * specular * s.occlusion;\n #if CC_USE_LIGHT_PROBE\n finalColor += SHEvaluate(N) * diffuse * s.occlusion;\n #endif\n finalColor += ambDiff.rgb * cc_ambientSky.w * diffuse * s.occlusion;\n finalColor += s.emissive;\n return vec4(finalColor, s.albedo.a);\n }\n #if CC_PIPELINE_TYPE == 0\n #define LIGHTS_PER_PASS 1\n #else\n #define LIGHTS_PER_PASS 10\n #endif\n #if CC_ENABLE_CLUSTERED_LIGHT_CULLING == 0\n layout(set = 2, binding = 1) uniform CCForwardLight {\n highp vec4 cc_lightPos[LIGHTS_PER_PASS];\n vec4 cc_lightColor[LIGHTS_PER_PASS];\n vec4 cc_lightSizeRangeAngle[LIGHTS_PER_PASS];\n vec4 cc_lightDir[LIGHTS_PER_PASS];\n vec4 cc_lightBoundingSizeVS[LIGHTS_PER_PASS];\n };\n #endif\n float SmoothDistAtt (float distSqr, float invSqrAttRadius) {\n float factor = distSqr * invSqrAttRadius;\n float smoothFactor = clamp(1.0 - factor * factor, 0.0, 1.0);\n return smoothFactor * smoothFactor;\n }\n float GetDistAtt (float distSqr, float invSqrAttRadius) {\n float attenuation = 1.0 / max(distSqr, 0.01*0.01);\n attenuation *= SmoothDistAtt(distSqr , invSqrAttRadius);\n return attenuation;\n }\n float GetAngleAtt (vec3 L, vec3 litDir, float litAngleScale, float litAngleOffset) {\n float cd = dot(litDir, L);\n float attenuation = clamp(cd * litAngleScale + litAngleOffset, 0.0, 1.0);\n return (attenuation * attenuation);\n }\n float GetOutOfRange (vec3 worldPos, vec3 lightPos, vec3 lookAt, vec3 right, vec3 BoundingHalfSizeVS) {\n vec3 v = vec3(0.0);\n vec3 up = cross(right, lookAt);\n worldPos -= lightPos;\n v.x = dot(worldPos, right);\n v.y = dot(worldPos, up);\n v.z = dot(worldPos, lookAt);\n vec3 result = step(abs(v), BoundingHalfSizeVS);\n return result.x * result.y * result.z;\n }\n #if CC_ENABLE_CLUSTERED_LIGHT_CULLING == 0\n vec4 CCStandardShadingAdditive (StandardSurface s, vec4 shadowPos) {\n vec3 position;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n position = unpackHighpData(s.position, s.position_fract_part);\n #else\n position = s.position;\n #endif\n vec3 diffuse = s.albedo.rgb * (1.0 - s.metallic);\n vec3 specular = mix(vec3(0.04), s.albedo.rgb, s.metallic);\n vec3 diffuseContrib = diffuse / PI;\n vec3 N = normalize(s.normal);\n vec3 V = normalize(cc_cameraPos.xyz - position);\n float NV = max(abs(dot(N, V)), 0.0);\n specular = BRDFApprox(specular, s.roughness, NV);\n vec3 finalColor = vec3(0.0);\n int numLights = CC_PIPELINE_TYPE == 0 ? LIGHTS_PER_PASS : int(cc_lightDir[0].w);\n for (int i = 0; i < LIGHTS_PER_PASS; i++) {\n if (i >= numLights) break;\n vec3 SLU = IS_RANGED_DIRECTIONAL_LIGHT(cc_lightPos[i].w) ? -cc_lightDir[i].xyz : cc_lightPos[i].xyz - position;\n vec3 SL = normalize(SLU);\n vec3 SH = normalize(SL + V);\n float SNL = max(dot(N, SL), 0.0);\n float SNH = max(dot(N, SH), 0.0);\n vec3 lspec = specular * CalcSpecular(s.roughness, SNH, SH, N);\n float illum = 1.0;\n float att = 1.0;\n if (IS_RANGED_DIRECTIONAL_LIGHT(cc_lightPos[i].w)) {\n att = GetOutOfRange(position, cc_lightPos[i].xyz, cc_lightDir[i].xyz, cc_lightSizeRangeAngle[i].xyz, cc_lightBoundingSizeVS[i].xyz);\n } else {\n float distSqr = dot(SLU, SLU);\n float litRadius = cc_lightSizeRangeAngle[i].x;\n float litRadiusSqr = litRadius * litRadius;\n illum = (IS_POINT_LIGHT(cc_lightPos[i].w) || IS_RANGED_DIRECTIONAL_LIGHT(cc_lightPos[i].w)) ? 1.0 : litRadiusSqr / max(litRadiusSqr, distSqr);\n float attRadiusSqrInv = 1.0 / max(cc_lightSizeRangeAngle[i].y, 0.01);\n attRadiusSqrInv *= attRadiusSqrInv;\n att = GetDistAtt(distSqr, attRadiusSqrInv);\n if (IS_SPOT_LIGHT(cc_lightPos[i].w)) {\n float cosInner = max(dot(-cc_lightDir[i].xyz, SL), 0.01);\n float cosOuter = cc_lightSizeRangeAngle[i].z;\n float litAngleScale = 1.0 / max(0.001, cosInner - cosOuter);\n float litAngleOffset = -cosOuter * litAngleScale;\n att *= GetAngleAtt(SL, -cc_lightDir[i].xyz, litAngleScale, litAngleOffset);\n }\n }\n float shadow = 1.0;\n #if CC_RECEIVE_SHADOW && CC_SHADOW_TYPE == 2\n if (IS_SPOT_LIGHT(cc_lightPos[i].w) && cc_lightSizeRangeAngle[i].w > 0.0) {\n shadow = CCSpotShadowFactorBase(shadowPos, position, s.shadowBias);\n }\n #endif\n finalColor += SNL * cc_lightColor[i].rgb * shadow * cc_lightColor[i].w * illum * att * (diffuseContrib + lspec);\n }\n return vec4(finalColor, 0.0);\n }\n #endif\n#if CC_ENABLE_CLUSTERED_LIGHT_CULLING == 1\n layout(std430, set = 1, binding = 4) readonly buffer b_ccLightsBuffer { vec4 b_ccLights[]; };\n layout(std430, set = 1, binding = 5) readonly buffer b_clusterLightIndicesBuffer { uint b_clusterLightIndices[]; };\n layout(std430, set = 1, binding = 6) readonly buffer b_clusterLightGridBuffer { uvec4 b_clusterLightGrid[]; };\n struct CCLight\n {\n vec4 cc_lightPos;\n vec4 cc_lightColor;\n vec4 cc_lightSizeRangeAngle;\n vec4 cc_lightDir;\n vec4 cc_lightBoundingSizeVS;\n };\n struct Cluster\n {\n vec3 minBounds;\n vec3 maxBounds;\n };\n struct LightGrid\n {\n uint offset;\n uint ccLights;\n };\n CCLight getCCLight(uint i)\n {\n CCLight light;\n light.cc_lightPos = b_ccLights[5u * i + 0u];\n light.cc_lightColor = b_ccLights[5u * i + 1u];\n light.cc_lightSizeRangeAngle = b_ccLights[5u * i + 2u];\n light.cc_lightDir = b_ccLights[5u * i + 3u];\n light.cc_lightBoundingSizeVS = b_ccLights[5u * i + 4u];\n return light;\n }\n LightGrid getLightGrid(uint cluster)\n {\n uvec4 gridvec = b_clusterLightGrid[cluster];\n LightGrid grid;\n grid.offset = gridvec.x;\n grid.ccLights = gridvec.y;\n return grid;\n }\n uint getGridLightIndex(uint start, uint offset)\n {\n return b_clusterLightIndices[start + offset];\n }\n uint getClusterZIndex(vec4 worldPos)\n {\n float scale = float(24u) / log(cc_nearFar.y / cc_nearFar.x);\n float bias = -(float(24u) * log(cc_nearFar.x) / log(cc_nearFar.y / cc_nearFar.x));\n float eyeDepth = -(cc_matView * worldPos).z;\n uint zIndex = uint(max(log(eyeDepth) * scale + bias, 0.0));\n return zIndex;\n }\n uint getClusterIndex(vec4 fragCoord, vec4 worldPos)\n {\n uint zIndex = getClusterZIndex(worldPos);\n float clusterSizeX = ceil(cc_viewPort.z / float(16u));\n float clusterSizeY = ceil(cc_viewPort.w / float(8u));\n uvec3 indices = uvec3(uvec2(fragCoord.xy / vec2(clusterSizeX, clusterSizeY)), zIndex);\n uint cluster = (16u * 8u) * indices.z + 16u * indices.y + indices.x;\n return cluster;\n }\n vec4 CCClusterShadingAdditive (StandardSurface s, vec4 shadowPos) {\n vec3 diffuse = s.albedo.rgb * (1.0 - s.metallic);\n vec3 specular = mix(vec3(0.04), s.albedo.rgb, s.metallic);\n vec3 diffuseContrib = diffuse / PI;\n vec3 position;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n position = unpackHighpData(s.position, s.position_fract_part);\n #else\n position = s.position;\n #endif\n vec3 N = normalize(s.normal);\n vec3 V = normalize(cc_cameraPos.xyz - position);\n float NV = max(abs(dot(N, V)), 0.001);\n specular = BRDFApprox(specular, s.roughness, NV);\n vec3 finalColor = vec3(0.0);\n uint cluster = getClusterIndex(gl_FragCoord, vec4(position, 1.0));\n LightGrid grid = getLightGrid(cluster);\n uint numLights = grid.ccLights;\n for (uint i = 0u; i < 200u; i++) {\n if (i >= numLights) break;\n uint lightIndex = getGridLightIndex(grid.offset, i);\n CCLight light = getCCLight(lightIndex);\n vec3 SLU = light.cc_lightPos.xyz - position;\n vec3 SL = normalize(SLU);\n vec3 SH = normalize(SL + V);\n float SNL = max(dot(N, SL), 0.001);\n float SNH = max(dot(N, SH), 0.0);\n float distSqr = dot(SLU, SLU);\n float litRadius = light.cc_lightSizeRangeAngle.x;\n float litRadiusSqr = litRadius * litRadius;\n float illum = PI * (litRadiusSqr / max(litRadiusSqr , distSqr));\n float attRadiusSqrInv = 1.0 / max(light.cc_lightSizeRangeAngle.y, 0.01);\n attRadiusSqrInv *= attRadiusSqrInv;\n float att = GetDistAtt(distSqr, attRadiusSqrInv);\n vec3 lspec = specular * CalcSpecular(s.roughness, SNH, SH, N);\n if (IS_SPOT_LIGHT(light.cc_lightPos.w)) {\n float cosInner = max(dot(-light.cc_lightDir.xyz, SL), 0.01);\n float cosOuter = light.cc_lightSizeRangeAngle.z;\n float litAngleScale = 1.0 / max(0.001, cosInner - cosOuter);\n float litAngleOffset = -cosOuter * litAngleScale;\n att *= GetAngleAtt(SL, -light.cc_lightDir.xyz, litAngleScale, litAngleOffset);\n }\n vec3 lightColor = light.cc_lightColor.rgb;\n float shadow = 1.0;\n #if CC_RECEIVE_SHADOW && CC_SHADOW_TYPE == 2\n if (IS_SPOT_LIGHT(light.cc_lightPos.w) && light.cc_lightSizeRangeAngle.w > 0.0) {\n shadow = CCSpotShadowFactorBase(shadowPos, position, s.shadowBias);\n }\n #endif\n lightColor *= shadow;\n finalColor += SNL * lightColor * light.cc_lightColor.w * illum * att * (diffuseContrib + lspec);\n }\n return vec4(finalColor, 0.0);\n }\n#endif\n vec3 ACESToneMap (vec3 color) {\n color = min(color, vec3(8.0));\n const float A = 2.51;\n const float B = 0.03;\n const float C = 2.43;\n const float D = 0.59;\n const float E = 0.14;\n return (color * (A * color + B)) / (color * (C * color + D) + E);\n }\n vec4 CCFragOutput (vec4 color) {\n #if CC_USE_RGBE_OUTPUT\n color = packRGBE(color.rgb);\n #elif !CC_USE_FLOAT_OUTPUT\n #if CC_USE_HDR && CC_TONE_MAPPING_TYPE == HDR_TONE_MAPPING_ACES\n color.rgb = ACESToneMap(color.rgb);\n #endif\n color.rgb = LinearToSRGB(color.rgb);\n #endif\n return color;\n }\n #if CC_USE_FOG != 4\n float LinearFog(vec4 pos, vec3 cameraPos, float fogStart, float fogEnd) {\n vec4 wPos = pos;\n float cam_dis = distance(cameraPos, wPos.xyz);\n return clamp((fogEnd - cam_dis) / (fogEnd - fogStart), 0., 1.);\n }\n float ExpFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * fogDensity);\n return f;\n }\n float ExpSquaredFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * cam_dis * fogDensity * fogDensity);\n return f;\n }\n float LayeredFog(vec4 pos, vec3 cameraPos, float fogTop, float fogRange, float fogAtten) {\n vec4 wPos = pos;\n vec3 camWorldProj = cameraPos.xyz;\n camWorldProj.y = 0.;\n vec3 worldPosProj = wPos.xyz;\n worldPosProj.y = 0.;\n float fDeltaD = distance(worldPosProj, camWorldProj) / fogAtten * 2.0;\n float fDeltaY, fDensityIntegral;\n if (cameraPos.y > fogTop) {\n if (wPos.y < fogTop) {\n fDeltaY = (fogTop - wPos.y) / fogRange * 2.0;\n fDensityIntegral = fDeltaY * fDeltaY * 0.5;\n }\n else {\n fDeltaY = 0.;\n fDensityIntegral = 0.;\n }\n }\n else {\n if (wPos.y < fogTop) {\n float fDeltaA = (fogTop - cameraPos.y) / fogRange * 2.;\n float fDeltaB = (fogTop - wPos.y) / fogRange * 2.;\n fDeltaY = abs(fDeltaA - fDeltaB);\n fDensityIntegral = abs((fDeltaA * fDeltaA * 0.5) - (fDeltaB * fDeltaB * 0.5));\n }\n else {\n fDeltaY = abs(fogTop - cameraPos.y) / fogRange * 2.;\n fDensityIntegral = abs(fDeltaY * fDeltaY * 0.5);\n }\n }\n float fDensity;\n if (fDeltaY != 0.) {\n fDensity = (sqrt(1.0 + ((fDeltaD / fDeltaY) * (fDeltaD / fDeltaY)))) * fDensityIntegral;\n }\n else {\n fDensity = 0.;\n }\n float f = exp(-fDensity);\n return f;\n }\n #endif\n void CC_TRANSFER_FOG_BASE(vec4 pos, out float factor)\n {\n #if CC_USE_FOG == 0\n \tfactor = LinearFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.y);\n #elif CC_USE_FOG == 1\n \tfactor = ExpFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n #elif CC_USE_FOG == 2\n \tfactor = ExpSquaredFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n #elif CC_USE_FOG == 3\n \tfactor = LayeredFog(pos, cc_cameraPos.xyz, cc_fogAdd.x, cc_fogAdd.y, cc_fogAdd.z);\n #else\n \tfactor = 1.0;\n #endif\n }\n void CC_APPLY_FOG_BASE(inout vec4 color, float factor) {\n \tcolor = vec4(mix(cc_fogColor.rgb, color.rgb, factor), color.a);\n }\n vec2 signNotZero(vec2 v) {\n return vec2((v.x >= 0.0) ? +1.0 : -1.0, (v.y >= 0.0) ? +1.0 : -1.0);\n }\n vec3 oct_to_float32x3(vec2 e) {\n vec3 v = vec3(e.xy, 1.0 - abs(e.x) - abs(e.y));\n if (v.z < 0.0) v.xy = (1.0 - abs(v.yx)) * signNotZero(v.xy);\n return normalize(v);\n }\n layout(location = 0) in vec2 v_uv;\n layout(set = 1, binding = 0) uniform sampler2D albedoMap;\n layout(set = 1, binding = 1) uniform sampler2D normalMap;\n layout(set = 1, binding = 2) uniform sampler2D emissiveMap;\n layout(set = 1, binding = 3) uniform sampler2D depthStencil;\n layout(location = 0) out vec4 fragColor;\n vec4 screen2WS(vec3 coord) {\n vec3 ndc = vec3(\n 2.0 * (coord.x - cc_viewPort.x) / cc_viewPort.z - 1.0,\n 2.0 * (coord.y - cc_viewPort.y) / cc_viewPort.w - 1.0,\n coord.z);\n CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(ndc.y);\n return GetWorldPosFromNDCPosRH(ndc, cc_matProj, cc_matViewProjInv);\n }\n void main () {\n StandardSurface s;\n vec4 albedo = texture(albedoMap, v_uv);\n vec4 normal = texture(normalMap, v_uv);\n vec4 emissive = texture(emissiveMap, v_uv);\n float depth = texture(depthStencil, v_uv).x;\n s.albedo = albedo;\n vec3 position = screen2WS(vec3(gl_FragCoord.xy, depth)).xyz;\n s.position = position;\n s.roughness = normal.z;\n s.normal = oct_to_float32x3(normal.xy);\n s.specularIntensity = 0.5;\n s.metallic = normal.w;\n s.emissive = emissive.xyz;\n s.occlusion = emissive.w;\n#if CC_RECEIVE_SHADOW\n s.shadowBias = vec2(0, 0);\n#endif\n float fogFactor;\n CC_TRANSFER_FOG_BASE(vec4(position, 1), fogFactor);\n vec4 shadowPos;\n shadowPos = cc_matLightViewProj * vec4(position, 1);\n vec4 color = CCStandardShadingBase(s, shadowPos) +\n#if CC_ENABLE_CLUSTERED_LIGHT_CULLING == 1\n CCClusterShadingAdditive(s, shadowPos);\n#else\n CCStandardShadingAdditive(s, shadowPos);\n#endif\n CC_APPLY_FOG_BASE(color, fogFactor);\n color = CCFragOutput(color);\n#if CC_USE_DEBUG_VIEW == CC_SURFACES_DEBUG_VIEW_SINGLE\n color = vec4(albedoMap.rgb, 1.0);\n#endif\n fragColor = color;\n }"
- },
- "glsl3": {
- "vert": "\nprecision highp float;\n#define QUATER_PI 0.78539816340\n#define HALF_PI 1.57079632679\n#define PI 3.14159265359\n#define PI2 6.28318530718\n#define PI4 12.5663706144\n#define INV_QUATER_PI 1.27323954474\n#define INV_HALF_PI 0.63661977237\n#define INV_PI 0.31830988618\n#define INV_PI2 0.15915494309\n#define INV_PI4 0.07957747155\n#define EPSILON 1e-6\n#define EPSILON_LOWP 1e-4\n#define LOG2 1.442695\n#define EXP_VALUE 2.71828183\n#define FP_MAX 65504.0\n#define FP_SCALE 0.0009765625\n#define FP_SCALE_INV 1024.0\n#define GRAY_VECTOR vec3(0.299, 0.587, 0.114)\n#define LIGHT_MAP_TYPE_DISABLED 0\n#define LIGHT_MAP_TYPE_ALL_IN_ONE 1\n#define LIGHT_MAP_TYPE_INDIRECT_OCCLUSION 2\n#define REFLECTION_PROBE_TYPE_NONE 0\n#define REFLECTION_PROBE_TYPE_CUBE 1\n#define REFLECTION_PROBE_TYPE_PLANAR 2\n#define REFLECTION_PROBE_TYPE_BLEND 3\n#define REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX 4\n#define LIGHT_TYPE_DIRECTIONAL 0.0\n#define LIGHT_TYPE_SPHERE 1.0\n#define LIGHT_TYPE_SPOT 2.0\n#define LIGHT_TYPE_POINT 3.0\n#define LIGHT_TYPE_RANGED_DIRECTIONAL 4.0\n#define IS_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_DIRECTIONAL)) < EPSILON_LOWP)\n#define IS_SPHERE_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPHERE)) < EPSILON_LOWP)\n#define IS_SPOT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPOT)) < EPSILON_LOWP)\n#define IS_POINT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_POINT)) < EPSILON_LOWP)\n#define IS_RANGED_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_RANGED_DIRECTIONAL)) < EPSILON_LOWP)\n#define TONE_MAPPING_ACES 0\n#define TONE_MAPPING_LINEAR 1\n#define SURFACES_MAX_TRANSMIT_DEPTH_VALUE 999999.0\n#ifndef CC_SURFACES_DEBUG_VIEW_SINGLE\n #define CC_SURFACES_DEBUG_VIEW_SINGLE 1\n#endif\n#ifndef CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC\n #define CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC 2\n#endif\nstruct StandardVertInput {\n highp vec4 position;\n vec3 normal;\n vec4 tangent;\n};\nin vec3 a_position;\nin vec3 a_normal;\nin vec2 a_texCoord;\nin vec4 a_tangent;\n#if CC_USE_SKINNING\n in vec4 a_joints;\n in vec4 a_weights;\n#endif\n#if USE_INSTANCING\n #if CC_USE_BAKED_ANIMATION\n in highp vec4 a_jointAnimInfo;\n #endif\n in vec4 a_matWorld0;\n in vec4 a_matWorld1;\n in vec4 a_matWorld2;\n #if CC_USE_LIGHTMAP\n in vec4 a_lightingMapUVParam;\n #endif\n #if CC_USE_REFLECTION_PROBE || CC_RECEIVE_SHADOW\n #if CC_RECEIVE_SHADOW\n #endif\n in vec4 a_localShadowBiasAndProbeId;\n #endif\n #if CC_USE_REFLECTION_PROBE\n in vec4 a_reflectionProbeData;\n #endif\n #if CC_USE_LIGHT_PROBE\n in vec4 a_sh_linear_const_r;\n in vec4 a_sh_linear_const_g;\n in vec4 a_sh_linear_const_b;\n #endif\n#endif\n#if CC_USE_MORPH\n in float a_vertexId;\n#endif\nlayout(std140) uniform CCGlobal {\n highp vec4 cc_time;\n mediump vec4 cc_screenSize;\n mediump vec4 cc_nativeSize;\n mediump vec4 cc_probeInfo;\n mediump vec4 cc_debug_view_mode;\n};\nlayout(std140) uniform CCCamera {\n highp mat4 cc_matView;\n highp mat4 cc_matViewInv;\n highp mat4 cc_matProj;\n highp mat4 cc_matProjInv;\n highp mat4 cc_matViewProj;\n highp mat4 cc_matViewProjInv;\n highp vec4 cc_cameraPos;\n mediump vec4 cc_surfaceTransform;\n mediump vec4 cc_screenScale;\n mediump vec4 cc_exposure;\n mediump vec4 cc_mainLitDir;\n mediump vec4 cc_mainLitColor;\n mediump vec4 cc_ambientSky;\n mediump vec4 cc_ambientGround;\n mediump vec4 cc_fogColor;\n mediump vec4 cc_fogBase;\n mediump vec4 cc_fogAdd;\n mediump vec4 cc_nearFar;\n mediump vec4 cc_viewPort;\n};\nout vec2 v_uv;\nvoid main () {\n vec4 position;\n position = vec4(a_position, 1.0);\n position.xy = cc_cameraPos.w == 0.0 ? vec2(position.xy.x, -position.xy.y) : position.xy;\n gl_Position = vec4(position.x, position.y, 1.0, 1.0);\n v_uv = a_texCoord;\n}",
- "frag": "\n precision highp float;\n layout(std140) uniform CCGlobal {\n highp vec4 cc_time;\n mediump vec4 cc_screenSize;\n mediump vec4 cc_nativeSize;\n mediump vec4 cc_probeInfo;\n mediump vec4 cc_debug_view_mode;\n };\n layout(std140) uniform CCCamera {\n highp mat4 cc_matView;\n highp mat4 cc_matViewInv;\n highp mat4 cc_matProj;\n highp mat4 cc_matProjInv;\n highp mat4 cc_matViewProj;\n highp mat4 cc_matViewProjInv;\n highp vec4 cc_cameraPos;\n mediump vec4 cc_surfaceTransform;\n mediump vec4 cc_screenScale;\n mediump vec4 cc_exposure;\n mediump vec4 cc_mainLitDir;\n mediump vec4 cc_mainLitColor;\n mediump vec4 cc_ambientSky;\n mediump vec4 cc_ambientGround;\n mediump vec4 cc_fogColor;\n mediump vec4 cc_fogBase;\n mediump vec4 cc_fogAdd;\n mediump vec4 cc_nearFar;\n mediump vec4 cc_viewPort;\n };\n #define QUATER_PI 0.78539816340\n #define HALF_PI 1.57079632679\n #define PI 3.14159265359\n #define PI2 6.28318530718\n #define PI4 12.5663706144\n #define INV_QUATER_PI 1.27323954474\n #define INV_HALF_PI 0.63661977237\n #define INV_PI 0.31830988618\n #define INV_PI2 0.15915494309\n #define INV_PI4 0.07957747155\n #define EPSILON 1e-6\n #define EPSILON_LOWP 1e-4\n #define LOG2 1.442695\n #define EXP_VALUE 2.71828183\n #define FP_MAX 65504.0\n #define FP_SCALE 0.0009765625\n #define FP_SCALE_INV 1024.0\n #define GRAY_VECTOR vec3(0.299, 0.587, 0.114)\n #define LIGHT_MAP_TYPE_DISABLED 0\n #define LIGHT_MAP_TYPE_ALL_IN_ONE 1\n #define LIGHT_MAP_TYPE_INDIRECT_OCCLUSION 2\n #define REFLECTION_PROBE_TYPE_NONE 0\n #define REFLECTION_PROBE_TYPE_CUBE 1\n #define REFLECTION_PROBE_TYPE_PLANAR 2\n #define REFLECTION_PROBE_TYPE_BLEND 3\n #define REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX 4\n #define LIGHT_TYPE_DIRECTIONAL 0.0\n #define LIGHT_TYPE_SPHERE 1.0\n #define LIGHT_TYPE_SPOT 2.0\n #define LIGHT_TYPE_POINT 3.0\n #define LIGHT_TYPE_RANGED_DIRECTIONAL 4.0\n #define IS_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_DIRECTIONAL)) < EPSILON_LOWP)\n #define IS_SPHERE_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPHERE)) < EPSILON_LOWP)\n #define IS_SPOT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPOT)) < EPSILON_LOWP)\n #define IS_POINT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_POINT)) < EPSILON_LOWP)\n #define IS_RANGED_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_RANGED_DIRECTIONAL)) < EPSILON_LOWP)\n #define TONE_MAPPING_ACES 0\n #define TONE_MAPPING_LINEAR 1\n #define SURFACES_MAX_TRANSMIT_DEPTH_VALUE 999999.0\n #ifndef CC_SURFACES_DEBUG_VIEW_SINGLE\n #define CC_SURFACES_DEBUG_VIEW_SINGLE 1\n #endif\n #ifndef CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC\n #define CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC 2\n #endif\n vec3 SRGBToLinear (vec3 gamma) {\n #ifdef CC_USE_SURFACE_SHADER\n #if CC_USE_DEBUG_VIEW == CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC && CC_SURFACES_ENABLE_DEBUG_VIEW\n if (!IS_DEBUG_VIEW_COMPOSITE_ENABLE_GAMMA_CORRECTION) {\n return gamma;\n }\n #endif\n #endif\n return gamma * gamma;\n }\n vec3 LinearToSRGB(vec3 linear) {\n #ifdef CC_USE_SURFACE_SHADER\n #if CC_USE_DEBUG_VIEW == CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC && CC_SURFACES_ENABLE_DEBUG_VIEW\n if (!IS_DEBUG_VIEW_COMPOSITE_ENABLE_GAMMA_CORRECTION) {\n return linear;\n }\n #endif\n #endif\n return sqrt(linear);\n }\n layout(std140) uniform CCShadow {\n highp mat4 cc_matLightView;\n highp mat4 cc_matLightViewProj;\n highp vec4 cc_shadowInvProjDepthInfo;\n highp vec4 cc_shadowProjDepthInfo;\n highp vec4 cc_shadowProjInfo;\n mediump vec4 cc_shadowNFLSInfo;\n mediump vec4 cc_shadowWHPBInfo;\n mediump vec4 cc_shadowLPNNInfo;\n lowp vec4 cc_shadowColor;\n mediump vec4 cc_planarNDInfo;\n };\n #if CC_SUPPORT_CASCADED_SHADOW_MAP\n layout(std140) uniform CCCSM {\n highp vec4 cc_csmViewDir0[4];\n highp vec4 cc_csmViewDir1[4];\n highp vec4 cc_csmViewDir2[4];\n highp vec4 cc_csmAtlas[4];\n highp mat4 cc_matCSMViewProj[4];\n highp vec4 cc_csmProjDepthInfo[4];\n highp vec4 cc_csmProjInfo[4];\n highp vec4 cc_csmSplitsInfo;\n };\n #endif\n #if defined(CC_USE_METAL) || defined(CC_USE_WGPU)\n #define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y) y = -y\n #else\n #define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y)\n #endif\n vec2 GetPlanarReflectScreenUV(vec3 worldPos, mat4 matVirtualCameraViewProj, float flipNDCSign, vec3 viewDir, vec3 reflectDir)\n {\n vec4 clipPos = matVirtualCameraViewProj * vec4(worldPos, 1.0);\n vec2 screenUV = clipPos.xy / clipPos.w * 0.5 + 0.5;\n screenUV = vec2(1.0 - screenUV.x, screenUV.y);\n screenUV = flipNDCSign == 1.0 ? vec2(screenUV.x, 1.0 - screenUV.y) : screenUV;\n return screenUV;\n }\n float GetCameraDepthRH(float depthHS, mat4 matProj)\n {\n return -matProj[3][2] / (depthHS + matProj[2][2]);\n }\n float GetCameraDepthRH(float depthHS, float matProj32, float matProj22)\n {\n return -matProj32 / (depthHS + matProj22);\n }\n vec4 GetWorldPosFromNDCPosRH(vec3 posHS, mat4 matProj, mat4 matViewProjInv)\n {\n float w = -GetCameraDepthRH(posHS.z, matProj);\n return matViewProjInv * vec4(posHS * w, w);\n }\n float GetLinearDepthFromViewSpace(vec3 viewPos, float near, float far) {\n float dist = length(viewPos);\n return (dist - near) / (far - near);\n }\n vec3 RotationVecFromAxisY(vec3 v, float cosTheta, float sinTheta)\n {\n vec3 result;\n result.x = dot(v, vec3(cosTheta, 0.0, -sinTheta));\n result.y = v.y;\n result.z = dot(v, vec3(sinTheta, 0.0, cosTheta));\n return result;\n }\n vec3 RotationVecFromAxisY(vec3 v, float rotateAngleArc)\n {\n return RotationVecFromAxisY(v, cos(rotateAngleArc), sin(rotateAngleArc));\n }\n float CCGetLinearDepth(vec3 worldPos, float viewSpaceBias) {\n \tvec4 viewPos = cc_matLightView * vec4(worldPos.xyz, 1.0);\n viewPos.z += viewSpaceBias;\n \treturn GetLinearDepthFromViewSpace(viewPos.xyz, cc_shadowNFLSInfo.x, cc_shadowNFLSInfo.y);\n }\n float CCGetLinearDepth(vec3 worldPos) {\n \treturn CCGetLinearDepth(worldPos, 0.0);\n }\n #if CC_RECEIVE_SHADOW\n uniform highp sampler2D cc_shadowMap;\n uniform highp sampler2D cc_spotShadowMap;\n #define UnpackBitFromFloat(value, bit) (mod(floor(value / pow(10.0, float(bit))), 10.0) > 0.0)\n highp float unpackHighpData (float mainPart, float modPart) {\n highp float data = mainPart;\n return data + modPart;\n }\n highp float unpackHighpData (float mainPart, float modPart, const float modValue) {\n highp float data = mainPart * modValue;\n return data + modPart * modValue;\n }\n highp vec2 unpackHighpData (vec2 mainPart, vec2 modPart) {\n highp vec2 data = mainPart;\n return data + modPart;\n }\n highp vec2 unpackHighpData (vec2 mainPart, vec2 modPart, const float modValue) {\n highp vec2 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n highp vec3 unpackHighpData (vec3 mainPart, vec3 modPart) {\n highp vec3 data = mainPart;\n return data + modPart;\n }\n highp vec3 unpackHighpData (vec3 mainPart, vec3 modPart, const float modValue) {\n highp vec3 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n highp vec4 unpackHighpData (vec4 mainPart, vec4 modPart) {\n highp vec4 data = mainPart;\n return data + modPart;\n }\n highp vec4 unpackHighpData (vec4 mainPart, vec4 modPart, const float modValue) {\n highp vec4 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n float NativePCFShadowFactorHard (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n #if CC_SHADOWMAP_FORMAT == 1\n return step(shadowNDCPos.z, dot(texture(shadowMap, shadowNDCPos.xy), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n return step(shadowNDCPos.z, texture(shadowMap, shadowNDCPos.xy).x);\n #endif\n }\n float NativePCFShadowFactorSoft (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n vec2 shadowNDCPos_offset = shadowNDCPos.xy + oneTap;\n float block0, block1, block2, block3;\n #if CC_SHADOWMAP_FORMAT == 1\n block0 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block1 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos_offset.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block0 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)).x);\n block1 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos.y)).x);\n block2 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset.y)).x);\n block3 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos_offset.y)).x);\n #endif\n float coefX = mod(shadowNDCPos.x, oneTap.x) * shadowMapResolution.x;\n float resultX = mix(block0, block1, coefX);\n float resultY = mix(block2, block3, coefX);\n float coefY = mod(shadowNDCPos.y, oneTap.y) * shadowMapResolution.y;\n return mix(resultX, resultY, coefY);\n }\n float NativePCFShadowFactorSoft3X (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n float shadowNDCPos_offset_L = shadowNDCPos.x - oneTap.x;\n float shadowNDCPos_offset_R = shadowNDCPos.x + oneTap.x;\n float shadowNDCPos_offset_U = shadowNDCPos.y - oneTap.y;\n float shadowNDCPos_offset_D = shadowNDCPos.y + oneTap.y;\n float block0, block1, block2, block3, block4, block5, block6, block7, block8;\n #if CC_SHADOWMAP_FORMAT == 1\n block0 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block1 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block4 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block5 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block6 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block7 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block8 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block0 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_U)).x);\n block1 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_U)).x);\n block2 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_U)).x);\n block3 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos.y)).x);\n block4 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)).x);\n block5 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos.y)).x);\n block6 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_D)).x);\n block7 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_D)).x);\n block8 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_D)).x);\n #endif\n float coefX = mod(shadowNDCPos.x, oneTap.x) * shadowMapResolution.x;\n float coefY = mod(shadowNDCPos.y, oneTap.y) * shadowMapResolution.y;\n float shadow = 0.0;\n float resultX = mix(block0, block1, coefX);\n float resultY = mix(block3, block4, coefX);\n shadow += mix(resultX , resultY, coefY);\n resultX = mix(block1, block2, coefX);\n resultY = mix(block4, block5, coefX);\n shadow += mix(resultX , resultY, coefY);\n resultX = mix(block3, block4, coefX);\n resultY = mix(block6, block7, coefX);\n shadow += mix(resultX, resultY, coefY);\n resultX = mix(block4, block5, coefX);\n resultY = mix(block7, block8, coefX);\n shadow += mix(resultX, resultY, coefY);\n return shadow * 0.25;\n }\n float NativePCFShadowFactorSoft5X (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n vec2 twoTap = oneTap * 2.0;\n vec2 offset1 = shadowNDCPos.xy + vec2(-twoTap.x, -twoTap.y);\n vec2 offset2 = shadowNDCPos.xy + vec2(-oneTap.x, -twoTap.y);\n vec2 offset3 = shadowNDCPos.xy + vec2(0.0, -twoTap.y);\n vec2 offset4 = shadowNDCPos.xy + vec2(oneTap.x, -twoTap.y);\n vec2 offset5 = shadowNDCPos.xy + vec2(twoTap.x, -twoTap.y);\n vec2 offset6 = shadowNDCPos.xy + vec2(-twoTap.x, -oneTap.y);\n vec2 offset7 = shadowNDCPos.xy + vec2(-oneTap.x, -oneTap.y);\n vec2 offset8 = shadowNDCPos.xy + vec2(0.0, -oneTap.y);\n vec2 offset9 = shadowNDCPos.xy + vec2(oneTap.x, -oneTap.y);\n vec2 offset10 = shadowNDCPos.xy + vec2(twoTap.x, -oneTap.y);\n vec2 offset11 = shadowNDCPos.xy + vec2(-twoTap.x, 0.0);\n vec2 offset12 = shadowNDCPos.xy + vec2(-oneTap.x, 0.0);\n vec2 offset13 = shadowNDCPos.xy + vec2(0.0, 0.0);\n vec2 offset14 = shadowNDCPos.xy + vec2(oneTap.x, 0.0);\n vec2 offset15 = shadowNDCPos.xy + vec2(twoTap.x, 0.0);\n vec2 offset16 = shadowNDCPos.xy + vec2(-twoTap.x, oneTap.y);\n vec2 offset17 = shadowNDCPos.xy + vec2(-oneTap.x, oneTap.y);\n vec2 offset18 = shadowNDCPos.xy + vec2(0.0, oneTap.y);\n vec2 offset19 = shadowNDCPos.xy + vec2(oneTap.x, oneTap.y);\n vec2 offset20 = shadowNDCPos.xy + vec2(twoTap.x, oneTap.y);\n vec2 offset21 = shadowNDCPos.xy + vec2(-twoTap.x, twoTap.y);\n vec2 offset22 = shadowNDCPos.xy + vec2(-oneTap.x, twoTap.y);\n vec2 offset23 = shadowNDCPos.xy + vec2(0.0, twoTap.y);\n vec2 offset24 = shadowNDCPos.xy + vec2(oneTap.x, twoTap.y);\n vec2 offset25 = shadowNDCPos.xy + vec2(twoTap.x, twoTap.y);\n float block1, block2, block3, block4, block5, block6, block7, block8, block9, block10, block11, block12, block13, block14, block15, block16, block17, block18, block19, block20, block21, block22, block23, block24, block25;\n #if CC_SHADOWMAP_FORMAT == 1\n block1 = step(shadowNDCPos.z, dot(texture(shadowMap, offset1), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture(shadowMap, offset2), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture(shadowMap, offset3), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block4 = step(shadowNDCPos.z, dot(texture(shadowMap, offset4), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block5 = step(shadowNDCPos.z, dot(texture(shadowMap, offset5), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block6 = step(shadowNDCPos.z, dot(texture(shadowMap, offset6), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block7 = step(shadowNDCPos.z, dot(texture(shadowMap, offset7), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block8 = step(shadowNDCPos.z, dot(texture(shadowMap, offset8), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block9 = step(shadowNDCPos.z, dot(texture(shadowMap, offset9), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block10 = step(shadowNDCPos.z, dot(texture(shadowMap, offset10), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block11 = step(shadowNDCPos.z, dot(texture(shadowMap, offset11), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block12 = step(shadowNDCPos.z, dot(texture(shadowMap, offset12), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block13 = step(shadowNDCPos.z, dot(texture(shadowMap, offset13), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block14 = step(shadowNDCPos.z, dot(texture(shadowMap, offset14), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block15 = step(shadowNDCPos.z, dot(texture(shadowMap, offset15), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block16 = step(shadowNDCPos.z, dot(texture(shadowMap, offset16), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block17 = step(shadowNDCPos.z, dot(texture(shadowMap, offset17), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block18 = step(shadowNDCPos.z, dot(texture(shadowMap, offset18), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block19 = step(shadowNDCPos.z, dot(texture(shadowMap, offset19), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block20 = step(shadowNDCPos.z, dot(texture(shadowMap, offset20), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block21 = step(shadowNDCPos.z, dot(texture(shadowMap, offset21), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block22 = step(shadowNDCPos.z, dot(texture(shadowMap, offset22), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block23 = step(shadowNDCPos.z, dot(texture(shadowMap, offset23), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block24 = step(shadowNDCPos.z, dot(texture(shadowMap, offset24), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block25 = step(shadowNDCPos.z, dot(texture(shadowMap, offset25), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block1 = step(shadowNDCPos.z, texture(shadowMap, offset1).x);\n block2 = step(shadowNDCPos.z, texture(shadowMap, offset2).x);\n block3 = step(shadowNDCPos.z, texture(shadowMap, offset3).x);\n block4 = step(shadowNDCPos.z, texture(shadowMap, offset4).x);\n block5 = step(shadowNDCPos.z, texture(shadowMap, offset5).x);\n block6 = step(shadowNDCPos.z, texture(shadowMap, offset6).x);\n block7 = step(shadowNDCPos.z, texture(shadowMap, offset7).x);\n block8 = step(shadowNDCPos.z, texture(shadowMap, offset8).x);\n block9 = step(shadowNDCPos.z, texture(shadowMap, offset9).x);\n block10 = step(shadowNDCPos.z, texture(shadowMap, offset10).x);\n block11 = step(shadowNDCPos.z, texture(shadowMap, offset11).x);\n block12 = step(shadowNDCPos.z, texture(shadowMap, offset12).x);\n block13 = step(shadowNDCPos.z, texture(shadowMap, offset13).x);\n block14 = step(shadowNDCPos.z, texture(shadowMap, offset14).x);\n block15 = step(shadowNDCPos.z, texture(shadowMap, offset15).x);\n block16 = step(shadowNDCPos.z, texture(shadowMap, offset16).x);\n block17 = step(shadowNDCPos.z, texture(shadowMap, offset17).x);\n block18 = step(shadowNDCPos.z, texture(shadowMap, offset18).x);\n block19 = step(shadowNDCPos.z, texture(shadowMap, offset19).x);\n block20 = step(shadowNDCPos.z, texture(shadowMap, offset20).x);\n block21 = step(shadowNDCPos.z, texture(shadowMap, offset21).x);\n block22 = step(shadowNDCPos.z, texture(shadowMap, offset22).x);\n block23 = step(shadowNDCPos.z, texture(shadowMap, offset23).x);\n block24 = step(shadowNDCPos.z, texture(shadowMap, offset24).x);\n block25 = step(shadowNDCPos.z, texture(shadowMap, offset25).x);\n #endif\n vec2 coef = fract(shadowNDCPos.xy * shadowMapResolution);\n vec2 v1X1 = mix(vec2(block1, block6), vec2(block2, block7), coef.xx);\n vec2 v1X2 = mix(vec2(block2, block7), vec2(block3, block8), coef.xx);\n vec2 v1X3 = mix(vec2(block3, block8), vec2(block4, block9), coef.xx);\n vec2 v1X4 = mix(vec2(block4, block9), vec2(block5, block10), coef.xx);\n float v1 = mix(v1X1.x, v1X1.y, coef.y) + mix(v1X2.x, v1X2.y, coef.y) + mix(v1X3.x, v1X3.y, coef.y) + mix(v1X4.x, v1X4.y, coef.y);\n vec2 v2X1 = mix(vec2(block6, block11), vec2(block7, block12), coef.xx);\n vec2 v2X2 = mix(vec2(block7, block12), vec2(block8, block13), coef.xx);\n vec2 v2X3 = mix(vec2(block8, block13), vec2(block9, block14), coef.xx);\n vec2 v2X4 = mix(vec2(block9, block14), vec2(block10, block15), coef.xx);\n float v2 = mix(v2X1.x, v2X1.y, coef.y) + mix(v2X2.x, v2X2.y, coef.y) + mix(v2X3.x, v2X3.y, coef.y) + mix(v2X4.x, v2X4.y, coef.y);\n vec2 v3X1 = mix(vec2(block11, block16), vec2(block12, block17), coef.xx);\n vec2 v3X2 = mix(vec2(block12, block17), vec2(block13, block18), coef.xx);\n vec2 v3X3 = mix(vec2(block13, block18), vec2(block14, block19), coef.xx);\n vec2 v3X4 = mix(vec2(block14, block19), vec2(block15, block20), coef.xx);\n float v3 = mix(v3X1.x, v3X1.y, coef.y) + mix(v3X2.x, v3X2.y, coef.y) + mix(v3X3.x, v3X3.y, coef.y) + mix(v3X4.x, v3X4.y, coef.y);\n vec2 v4X1 = mix(vec2(block16, block21), vec2(block17, block22), coef.xx);\n vec2 v4X2 = mix(vec2(block17, block22), vec2(block18, block23), coef.xx);\n vec2 v4X3 = mix(vec2(block18, block23), vec2(block19, block24), coef.xx);\n vec2 v4X4 = mix(vec2(block19, block24), vec2(block20, block25), coef.xx);\n float v4 = mix(v4X1.x, v4X1.y, coef.y) + mix(v4X2.x, v4X2.y, coef.y) + mix(v4X3.x, v4X3.y, coef.y) + mix(v4X4.x, v4X4.y, coef.y);\n float fAvg = (v1 + v2 + v3 + v4) * 0.0625;\n return fAvg;\n }\n bool GetShadowNDCPos(out vec3 shadowNDCPos, vec4 shadowPosWithDepthBias)\n {\n \tshadowNDCPos = shadowPosWithDepthBias.xyz / shadowPosWithDepthBias.w * 0.5 + 0.5;\n \tif (shadowNDCPos.x < 0.0 || shadowNDCPos.x > 1.0 ||\n \t\tshadowNDCPos.y < 0.0 || shadowNDCPos.y > 1.0 ||\n \t\tshadowNDCPos.z < 0.0 || shadowNDCPos.z > 1.0) {\n \t\treturn false;\n \t}\n \tshadowNDCPos.xy = cc_cameraPos.w == 1.0 ? vec2(shadowNDCPos.xy.x, 1.0 - shadowNDCPos.xy.y) : shadowNDCPos.xy;\n \treturn true;\n }\n vec4 ApplyShadowDepthBias_FaceNormal(vec4 shadowPos, vec3 worldNormal, float normalBias, vec3 matViewDir0, vec3 matViewDir1, vec3 matViewDir2, vec2 projScaleXY)\n {\n vec4 newShadowPos = shadowPos;\n if (normalBias > EPSILON_LOWP)\n {\n vec3 viewNormal = vec3(dot(matViewDir0, worldNormal), dot(matViewDir1, worldNormal), dot(matViewDir2, worldNormal));\n if (viewNormal.z < 0.1)\n newShadowPos.xy += viewNormal.xy * projScaleXY * normalBias * clamp(viewNormal.z, 0.001, 0.1);\n }\n return newShadowPos;\n }\n vec4 ApplyShadowDepthBias_FaceNormal(vec4 shadowPos, vec3 worldNormal, float normalBias, mat4 matLightView, vec2 projScaleXY)\n {\n \tvec4 newShadowPos = shadowPos;\n \tif (normalBias > EPSILON_LOWP)\n \t{\n \t\tvec4 viewNormal = matLightView * vec4(worldNormal, 0.0);\n \t\tif (viewNormal.z < 0.1)\n \t\t\tnewShadowPos.xy += viewNormal.xy * projScaleXY * normalBias * clamp(viewNormal.z, 0.001, 0.1);\n \t}\n \treturn newShadowPos;\n }\n float GetViewSpaceDepthFromNDCDepth_Orthgraphic(float NDCDepth, float projScaleZ, float projBiasZ)\n {\n \treturn (NDCDepth - projBiasZ) / projScaleZ;\n }\n float GetViewSpaceDepthFromNDCDepth_Perspective(float NDCDepth, float homogenousDividW, float invProjScaleZ, float invProjBiasZ)\n {\n \treturn NDCDepth * invProjScaleZ + homogenousDividW * invProjBiasZ;\n }\n vec4 ApplyShadowDepthBias_Perspective(vec4 shadowPos, float viewspaceDepthBias)\n {\n \tvec3 viewSpacePos;\n \tviewSpacePos.xy = shadowPos.xy * cc_shadowProjInfo.zw;\n \tviewSpacePos.z = GetViewSpaceDepthFromNDCDepth_Perspective(shadowPos.z, shadowPos.w, cc_shadowInvProjDepthInfo.x, cc_shadowInvProjDepthInfo.y);\n \tviewSpacePos.xyz += cc_shadowProjDepthInfo.z * normalize(viewSpacePos.xyz) * viewspaceDepthBias;\n \tvec4 clipSpacePos;\n \tclipSpacePos.xy = viewSpacePos.xy * cc_shadowProjInfo.xy;\n \tclipSpacePos.zw = viewSpacePos.z * cc_shadowProjDepthInfo.xz + vec2(cc_shadowProjDepthInfo.y, 0.0);\n \t#if CC_SHADOWMAP_USE_LINEAR_DEPTH\n \t\tclipSpacePos.z = GetLinearDepthFromViewSpace(viewSpacePos.xyz, cc_shadowNFLSInfo.x, cc_shadowNFLSInfo.y);\n \t\tclipSpacePos.z = (clipSpacePos.z * 2.0 - 1.0) * clipSpacePos.w;\n \t#endif\n \treturn clipSpacePos;\n }\n vec4 ApplyShadowDepthBias_Orthographic(vec4 shadowPos, float viewspaceDepthBias, float projScaleZ, float projBiasZ)\n {\n \tfloat coeffA = projScaleZ;\n \tfloat coeffB = projBiasZ;\n \tfloat viewSpacePos_z = GetViewSpaceDepthFromNDCDepth_Orthgraphic(shadowPos.z, projScaleZ, projBiasZ);\n \tviewSpacePos_z += viewspaceDepthBias;\n \tvec4 result = shadowPos;\n \tresult.z = viewSpacePos_z * coeffA + coeffB;\n \treturn result;\n }\n vec4 ApplyShadowDepthBias_PerspectiveLinearDepth(vec4 shadowPos, float viewspaceDepthBias, vec3 worldPos)\n {\n shadowPos.z = CCGetLinearDepth(worldPos, viewspaceDepthBias) * 2.0 - 1.0;\n shadowPos.z *= shadowPos.w;\n return shadowPos;\n }\n float CCGetDirLightShadowFactorHard (vec4 shadowPosWithDepthBias) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorHard(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft (vec4 shadowPosWithDepthBias) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft3X (vec4 shadowPosWithDepthBias) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft3X(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft5X (vec4 shadowPosWithDepthBias) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft5X(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetSpotLightShadowFactorHard (vec4 shadowPosWithDepthBias, vec3 worldPos) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorHard(shadowNDCPos, cc_spotShadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetSpotLightShadowFactorSoft (vec4 shadowPosWithDepthBias, vec3 worldPos) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft(shadowNDCPos, cc_spotShadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetSpotLightShadowFactorSoft3X (vec4 shadowPosWithDepthBias, vec3 worldPos) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft3X(shadowNDCPos, cc_spotShadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetSpotLightShadowFactorSoft5X (vec4 shadowPosWithDepthBias, vec3 worldPos) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft5X(shadowNDCPos, cc_spotShadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCSpotShadowFactorBase(out vec4 shadowPosWithDepthBias, vec4 shadowPos, vec3 worldPos, vec2 shadowBias)\n {\n float pcf = cc_shadowWHPBInfo.z;\n vec4 pos = vec4(1.0);\n #if CC_SHADOWMAP_USE_LINEAR_DEPTH\n pos = ApplyShadowDepthBias_PerspectiveLinearDepth(shadowPos, shadowBias.x, worldPos);\n #else\n pos = ApplyShadowDepthBias_Perspective(shadowPos, shadowBias.x);\n #endif\n float realtimeShadow = 1.0;\n if (pcf > 2.9) {\n realtimeShadow = CCGetSpotLightShadowFactorSoft5X(pos, worldPos);\n }else if (pcf > 1.9) {\n realtimeShadow = CCGetSpotLightShadowFactorSoft3X(pos, worldPos);\n }else if (pcf > 0.9) {\n realtimeShadow = CCGetSpotLightShadowFactorSoft(pos, worldPos);\n }else {\n realtimeShadow = CCGetSpotLightShadowFactorHard(pos, worldPos);\n }\n shadowPosWithDepthBias = pos;\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n }\n float CCShadowFactorBase(out vec4 shadowPosWithDepthBias, vec4 shadowPos, vec3 N, vec2 shadowBias)\n {\n vec4 pos = ApplyShadowDepthBias_FaceNormal(shadowPos, N, shadowBias.y, cc_matLightView, cc_shadowProjInfo.xy);\n pos = ApplyShadowDepthBias_Orthographic(pos, shadowBias.x, cc_shadowProjDepthInfo.x, cc_shadowProjDepthInfo.y);\n float realtimeShadow = 1.0;\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n realtimeShadow = CCGetDirLightShadowFactorSoft5X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n realtimeShadow = CCGetDirLightShadowFactorSoft3X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n realtimeShadow = CCGetDirLightShadowFactorSoft(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n realtimeShadow = CCGetDirLightShadowFactorHard(pos);\n #endif\n shadowPosWithDepthBias = pos;\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n }\n #if CC_SUPPORT_CASCADED_SHADOW_MAP\n bool CCGetCSMLevelWithTransition(out highp float ratio, vec3 clipPos) {\n highp float maxRange = 1.0 - cc_csmSplitsInfo.x;\n highp float minRange = cc_csmSplitsInfo.x;\n highp float thresholdInvert = 1.0 / cc_csmSplitsInfo.x;\n ratio = 0.0;\n if (clipPos.x <= minRange) {\n ratio = clipPos.x * thresholdInvert;\n return true;\n }\n if (clipPos.x >= maxRange) {\n ratio = 1.0 - (clipPos.x - maxRange) * thresholdInvert;\n return true;\n }\n if (clipPos.y <= minRange) {\n ratio = clipPos.y * thresholdInvert;\n return true;\n }\n if (clipPos.y >= maxRange) {\n ratio = 1.0 - (clipPos.y - maxRange) * thresholdInvert;\n return true;\n }\n return false;\n }\n bool CCHasCSMLevel(int level, vec3 worldPos) {\n highp float layerThreshold = cc_csmViewDir0[0].w;\n bool hasLevel = false;\n for (int i = 0; i < 4; i++) {\n if (i == level) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0) {\n hasLevel = true;\n }\n }\n }\n return hasLevel;\n }\n void CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos, int level) {\n highp float layerThreshold = cc_csmViewDir0[0].w;\n for (int i = 0; i < 4; i++) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0 && i == level) {\n csmPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n csmPos.xy = csmPos.xy * cc_csmAtlas[i].xy + cc_csmAtlas[i].zw;\n shadowProjDepthInfo = cc_csmProjDepthInfo[i];\n shadowProjInfo = cc_csmProjInfo[i];\n shadowViewDir0 = cc_csmViewDir0[i].xyz;\n shadowViewDir1 = cc_csmViewDir1[i].xyz;\n shadowViewDir2 = cc_csmViewDir2[i].xyz;\n }\n }\n }\n int CCGetCSMLevel(out bool isTransitionArea, out highp float transitionRatio, out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos)\n {\n int level = -1;\n highp float layerThreshold = cc_csmViewDir0[0].w;\n for (int i = 0; i < 4; i++) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0 && level < 0) {\n #if CC_CASCADED_LAYERS_TRANSITION\n isTransitionArea = CCGetCSMLevelWithTransition(transitionRatio, clipPos);\n #endif\n csmPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n csmPos.xy = csmPos.xy * cc_csmAtlas[i].xy + cc_csmAtlas[i].zw;\n shadowProjDepthInfo = cc_csmProjDepthInfo[i];\n shadowProjInfo = cc_csmProjInfo[i];\n shadowViewDir0 = cc_csmViewDir0[i].xyz;\n shadowViewDir1 = cc_csmViewDir1[i].xyz;\n shadowViewDir2 = cc_csmViewDir2[i].xyz;\n level = i;\n }\n }\n return level;\n }\n int CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos)\n {\n bool isTransitionArea = false;\n highp float transitionRatio = 0.0;\n return CCGetCSMLevel(isTransitionArea, transitionRatio, csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n }\n float CCCSMFactorBase(out vec4 csmPos, out vec4 csmPosWithBias, vec3 worldPos, vec3 N, vec2 shadowBias)\n {\n bool isTransitionArea = false;\n highp float ratio = 0.0;\n csmPos = vec4(1.0);\n vec4 shadowProjDepthInfo, shadowProjInfo;\n vec3 shadowViewDir0, shadowViewDir1, shadowViewDir2;\n int level = -1;\n #if CC_CASCADED_LAYERS_TRANSITION\n level = CCGetCSMLevel(isTransitionArea, ratio, csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n #else\n level = CCGetCSMLevel(csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n #endif\n if (level < 0) { return 1.0; }\n vec4 pos = ApplyShadowDepthBias_FaceNormal(csmPos, N, shadowBias.y, shadowViewDir0, shadowViewDir1, shadowViewDir2, shadowProjInfo.xy);\n pos = ApplyShadowDepthBias_Orthographic(pos, shadowBias.x, shadowProjDepthInfo.x, shadowProjDepthInfo.y);\n csmPosWithBias = pos;\n float realtimeShadow = 1.0;\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n realtimeShadow = CCGetDirLightShadowFactorSoft5X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n realtimeShadow = CCGetDirLightShadowFactorSoft3X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n realtimeShadow = CCGetDirLightShadowFactorSoft(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n realtimeShadow = CCGetDirLightShadowFactorHard(pos);\n #endif\n #if CC_CASCADED_LAYERS_TRANSITION\n vec4 nextCSMPos = vec4(1.0);\n vec4 nextShadowProjDepthInfo, nextShadowProjInfo;\n vec3 nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2;\n float nextRealtimeShadow = 1.0;\n CCGetCSMLevel(nextCSMPos, nextShadowProjDepthInfo, nextShadowProjInfo, nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2, worldPos, level + 1);\n bool hasNextLevel = CCHasCSMLevel(level + 1, worldPos);\n if (hasNextLevel && isTransitionArea) {\n vec4 nexPos = ApplyShadowDepthBias_FaceNormal(nextCSMPos, N, shadowBias.y, nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2, nextShadowProjInfo.xy);\n nexPos = ApplyShadowDepthBias_Orthographic(nexPos, shadowBias.x, nextShadowProjDepthInfo.x, nextShadowProjDepthInfo.y);\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft5X(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft3X(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n nextRealtimeShadow = CCGetDirLightShadowFactorHard(nexPos);\n #endif\n return mix(mix(nextRealtimeShadow, realtimeShadow, ratio), 1.0, cc_shadowNFLSInfo.w);\n }\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n #else\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n #endif\n }\n #else\n int CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos) {\n return -1;\n }\n float CCCSMFactorBase(out vec4 csmPos, out vec4 csmPosWithBias, vec3 worldPos, vec3 N, vec2 shadowBias) {\n csmPos = cc_matLightViewProj * vec4(worldPos, 1.0);\n return CCShadowFactorBase(csmPosWithBias, csmPos, N, shadowBias);\n }\n #endif\n float CCShadowFactorBase(vec4 shadowPos, vec3 N, vec2 shadowBias) {\n vec4 shadowPosWithDepthBias;\n return CCShadowFactorBase(shadowPosWithDepthBias, shadowPos, N, shadowBias);\n }\n float CCCSMFactorBase(vec3 worldPos, vec3 N, vec2 shadowBias) {\n vec4 csmPos, csmPosWithBias;\n return CCCSMFactorBase(csmPos, csmPosWithBias, worldPos, N, shadowBias);\n }\n float CCSpotShadowFactorBase(vec4 shadowPos, vec3 worldPos, vec2 shadowBias)\n {\n vec4 shadowPosWithDepthBias;\n return CCSpotShadowFactorBase(shadowPosWithDepthBias, shadowPos, worldPos, shadowBias);\n }\n #endif\n highp float decode32 (highp vec4 rgba) {\n rgba = rgba * 255.0;\n highp float Sign = 1.0 - (step(128.0, (rgba[3]) + 0.5)) * 2.0;\n highp float Exponent = 2.0 * (mod(float(int((rgba[3]) + 0.5)), 128.0)) + (step(128.0, (rgba[2]) + 0.5)) - 127.0;\n highp float Mantissa = (mod(float(int((rgba[2]) + 0.5)), 128.0)) * 65536.0 + rgba[1] * 256.0 + rgba[0] + 8388608.0;\n return Sign * exp2(Exponent - 23.0) * Mantissa;\n }\n vec4 packRGBE (vec3 rgb) {\n highp float maxComp = max(max(rgb.r, rgb.g), rgb.b);\n highp float e = 128.0;\n if (maxComp > 0.0001) {\n e = log(maxComp) / log(1.1);\n e = ceil(e);\n e = clamp(e + 128.0, 0.0, 255.0);\n }\n highp float sc = 1.0 / pow(1.1, e - 128.0);\n vec3 encode = clamp(rgb * sc, vec3(0.0), vec3(1.0)) * 255.0;\n vec3 encode_rounded = floor(encode) + step(encode - floor(encode), vec3(0.5));\n return vec4(encode_rounded, e) / 255.0;\n }\n vec3 unpackRGBE (vec4 rgbe) {\n return rgbe.rgb * pow(1.1, rgbe.a * 255.0 - 128.0);\n }\n vec4 fragTextureLod (sampler2D tex, vec2 coord, float lod) {\n return textureLod(tex, coord, lod);\n }\n vec4 fragTextureLod (samplerCube tex, vec3 coord, float lod) {\n return textureLod(tex, coord, lod);\n }\n uniform samplerCube cc_environment;\n vec3 CalculateReflectDirection(vec3 N, vec3 V, float NoV)\n {\n float sideSign = NoV < 0.0 ? -1.0 : 1.0;\n N *= sideSign;\n return reflect(-V, N);\n }\n vec3 CalculatePlanarReflectPositionOnPlane(vec3 N, vec3 V, vec3 worldPos, vec4 plane, vec3 cameraPos, float probeReflectedDepth)\n {\n float distPixelToPlane = -dot(plane, vec4(worldPos, 1.0));\n plane.w += distPixelToPlane;\n float distCameraToPlane = abs(-dot(plane, vec4(cameraPos, 1.0)));\n vec3 planeN = plane.xyz;\n vec3 virtualCameraPos = cameraPos - 2.0 * distCameraToPlane * planeN;\n vec3 bumpedR = normalize(reflect(-V, N));\n vec3 reflectedPointPos = worldPos + probeReflectedDepth * bumpedR;\n vec3 virtualCameraToReflectedPoint = normalize(reflectedPointPos - virtualCameraPos);\n float y = distCameraToPlane / max(EPSILON_LOWP, dot(planeN, virtualCameraToReflectedPoint));\n return virtualCameraPos + y * virtualCameraToReflectedPoint;\n }\n vec4 CalculateBoxProjectedDirection(vec3 R, vec3 worldPos, vec3 cubeCenterPos, vec3 cubeBoxHalfSize)\n {\n vec3 W = worldPos - cubeCenterPos;\n vec3 projectedLength = (sign(R) * cubeBoxHalfSize - W) / (R + vec3(EPSILON));\n float len = min(min(projectedLength.x, projectedLength.y), projectedLength.z);\n vec3 P = W + len * R;\n float weight = len < 0.0 ? 0.0 : 1.0;\n return vec4(P, weight);\n }\n #if CC_USE_IBL\n #if CC_USE_DIFFUSEMAP\n uniform samplerCube cc_diffuseMap;\n #endif\n #endif\n #if CC_USE_REFLECTION_PROBE\n uniform samplerCube cc_reflectionProbeCubemap;\n uniform sampler2D cc_reflectionProbePlanarMap;\n uniform sampler2D cc_reflectionProbeDataMap;\n uniform samplerCube cc_reflectionProbeBlendCubemap;\n layout(std140) uniform CCLocal {\n highp mat4 cc_matWorld;\n highp mat4 cc_matWorldIT;\n highp vec4 cc_lightingMapUVParam;\n highp vec4 cc_localShadowBias;\n highp vec4 cc_reflectionProbeData1;\n highp vec4 cc_reflectionProbeData2;\n highp vec4 cc_reflectionProbeBlendData1;\n highp vec4 cc_reflectionProbeBlendData2;\n };\n vec4 GetTexData(sampler2D dataMap, float dataMapWidth, float x, float uv_y)\n {\n return vec4(\n decode32(texture(dataMap, vec2(((x + 0.5)/dataMapWidth), uv_y))),\n decode32(texture(dataMap, vec2(((x + 1.5)/dataMapWidth), uv_y))),\n decode32(texture(dataMap, vec2(((x + 2.5)/dataMapWidth), uv_y))),\n decode32(texture(dataMap, vec2(((x + 3.5)/dataMapWidth), uv_y)))\n );\n }\n void GetPlanarReflectionProbeData(out vec4 plane, out float planarReflectionDepthScale, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n plane.xyz = texData1.xyz;\n plane.w = texData2.x;\n planarReflectionDepthScale = texData2.y;\n mipCount = texData2.z;\n #else\n plane = cc_reflectionProbeData1;\n planarReflectionDepthScale = cc_reflectionProbeData2.x;\n mipCount = cc_reflectionProbeData2.w;\n #endif\n }\n void GetCubeReflectionProbeData(out vec3 centerPos, out vec3 boxHalfSize, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n centerPos = texData1.xyz;\n boxHalfSize = texData2.xyz;\n mipCount = texData3.x;\n #else\n centerPos = cc_reflectionProbeData1.xyz;\n boxHalfSize = cc_reflectionProbeData2.xyz;\n mipCount = cc_reflectionProbeData2.w;\n #endif\n if (mipCount > 1000.0) mipCount -= 1000.0;\n }\n bool isReflectProbeUsingRGBE(float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n return texData3.x > 1000.0;\n #else\n return cc_reflectionProbeData2.w > 1000.0;\n #endif\n }\n bool isBlendReflectProbeUsingRGBE(float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n return texData3.x > 1000.0;\n #else\n return cc_reflectionProbeBlendData2.w > 1000.0;\n #endif\n }\n void GetBlendCubeReflectionProbeData(out vec3 centerPos, out vec3 boxHalfSize, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n centerPos = texData1.xyz;\n boxHalfSize = texData2.xyz;\n mipCount = texData3.x;\n #else\n centerPos = cc_reflectionProbeBlendData1.xyz;\n boxHalfSize = cc_reflectionProbeBlendData2.xyz;\n mipCount = cc_reflectionProbeBlendData2.w;\n #endif\n if (mipCount > 1000.0) mipCount -= 1000.0;\n }\n #endif\n #if CC_USE_LIGHT_PROBE\n #if CC_USE_LIGHT_PROBE\n #if USE_INSTANCING\n in mediump vec4 v_sh_linear_const_r;\n in mediump vec4 v_sh_linear_const_g;\n in mediump vec4 v_sh_linear_const_b;\n #else\n layout(std140) uniform CCSH {\n vec4 cc_sh_linear_const_r;\n vec4 cc_sh_linear_const_g;\n vec4 cc_sh_linear_const_b;\n vec4 cc_sh_quadratic_r;\n vec4 cc_sh_quadratic_g;\n vec4 cc_sh_quadratic_b;\n vec4 cc_sh_quadratic_a;\n };\n #endif\n #if CC_USE_LIGHT_PROBE\n vec3 SHEvaluate(vec3 normal)\n {\n vec3 result;\n #if USE_INSTANCING\n vec4 normal4 = vec4(normal, 1.0);\n result.r = dot(v_sh_linear_const_r, normal4);\n result.g = dot(v_sh_linear_const_g, normal4);\n result.b = dot(v_sh_linear_const_b, normal4);\n #else\n vec4 normal4 = vec4(normal, 1.0);\n result.r = dot(cc_sh_linear_const_r, normal4);\n result.g = dot(cc_sh_linear_const_g, normal4);\n result.b = dot(cc_sh_linear_const_b, normal4);\n vec4 n14 = normal.xyzz * normal.yzzx;\n float n5 = normal.x * normal.x - normal.y * normal.y;\n result.r += dot(cc_sh_quadratic_r, n14);\n result.g += dot(cc_sh_quadratic_g, n14);\n result.b += dot(cc_sh_quadratic_b, n14);\n result += (cc_sh_quadratic_a.rgb * n5);\n #endif\n #if CC_USE_HDR\n result *= cc_exposure.w * cc_exposure.x;\n #endif\n return result;\n }\n #endif\n #endif\n #endif\n float GGXMobile (float roughness, float NoH, vec3 H, vec3 N) {\n vec3 NxH = cross(N, H);\n float OneMinusNoHSqr = dot(NxH, NxH);\n float a = roughness * roughness;\n float n = NoH * a;\n float p = a / max(EPSILON, OneMinusNoHSqr + n * n);\n return p * p;\n }\n float CalcSpecular (float roughness, float NoH, vec3 H, vec3 N) {\n return (roughness * 0.25 + 0.25) * GGXMobile(roughness, NoH, H, N);\n }\n vec3 BRDFApprox (vec3 specular, float roughness, float NoV) {\n const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);\n const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);\n vec4 r = roughness * c0 + c1;\n float a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y;\n vec2 AB = vec2(-1.04, 1.04) * a004 + r.zw;\n AB.y *= clamp(50.0 * specular.g, 0.0, 1.0);\n return max(vec3(0.0), specular * AB.x + AB.y);\n }\n #if USE_REFLECTION_DENOISE\n vec3 GetEnvReflectionWithMipFiltering(vec3 R, float roughness, float mipCount, float denoiseIntensity, vec2 screenUV) {\n #if CC_USE_IBL\n \tfloat mip = roughness * (mipCount - 1.0);\n \tfloat delta = (dot(dFdx(R), dFdy(R))) * 1000.0;\n \tfloat mipBias = mix(0.0, 5.0, clamp(delta, 0.0, 1.0));\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_CUBE\n vec4 biased = fragTextureLod(cc_reflectionProbeCubemap, R, mip + mipBias);\n \t vec4 filtered = texture(cc_reflectionProbeCubemap, R);\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_PLANAR\n vec4 biased = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, mip + mipBias);\n vec4 filtered = texture(cc_reflectionProbePlanarMap, screenUV);\n #else\n vec4 biased = fragTextureLod(cc_environment, R, mip + mipBias);\n \t vec4 filtered = texture(cc_environment, R);\n #endif\n #if CC_USE_IBL == 2 || CC_USE_REFLECTION_PROBE != REFLECTION_PROBE_TYPE_NONE\n biased.rgb = unpackRGBE(biased);\n \tfiltered.rgb = unpackRGBE(filtered);\n #else\n \tbiased.rgb = SRGBToLinear(biased.rgb);\n \tfiltered.rgb = SRGBToLinear(filtered.rgb);\n #endif\n return mix(biased.rgb, filtered.rgb, denoiseIntensity);\n #else\n return vec3(0.0, 0.0, 0.0);\n #endif\n }\n #endif\n struct StandardSurface {\n vec4 albedo;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n vec3 position, position_fract_part;\n #else\n vec3 position;\n #endif\n vec3 normal;\n vec3 emissive;\n vec4 lightmap;\n float lightmap_test;\n float roughness;\n float metallic;\n float occlusion;\n float specularIntensity;\n #if CC_RECEIVE_SHADOW\n vec2 shadowBias;\n #endif\n #if CC_RECEIVE_SHADOW || CC_USE_REFLECTION_PROBE\n float reflectionProbeId;\n #endif\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND || CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n float reflectionProbeBlendId;\n float reflectionProbeBlendFactor;\n #endif\n };\n vec3 SampleReflectionProbe(samplerCube tex, vec3 R, float roughness, float mipCount, bool isRGBE) {\n vec4 envmap = fragTextureLod(tex, R, roughness * (mipCount - 1.0));\n if (isRGBE)\n return unpackRGBE(envmap);\n else\n return SRGBToLinear(envmap.rgb);\n }\n vec4 CCStandardShadingBase (StandardSurface s, vec4 shadowPos) {\n vec3 diffuse = s.albedo.rgb * (1.0 - s.metallic);\n vec3 specular = mix(vec3(0.08 * s.specularIntensity), s.albedo.rgb, s.metallic);\n vec3 position;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n position = unpackHighpData(s.position, s.position_fract_part);\n #else\n position = s.position;\n #endif\n vec3 N = normalize(s.normal);\n vec3 V = normalize(cc_cameraPos.xyz - position);\n vec3 L = normalize(-cc_mainLitDir.xyz);\n float NL = max(dot(N, L), 0.0);\n float shadow = 1.0;\n #if CC_RECEIVE_SHADOW && CC_SHADOW_TYPE == 2\n if (NL > 0.0 && cc_mainLitDir.w > 0.0) {\n #if CC_DIR_LIGHT_SHADOW_TYPE == 2\n shadow = CCCSMFactorBase(position, N, s.shadowBias);\n #endif\n #if CC_DIR_LIGHT_SHADOW_TYPE == 1\n shadow = CCShadowFactorBase(shadowPos, N, s.shadowBias);\n #endif\n }\n #endif\n vec3 finalColor = vec3(0.0);\n #if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n vec3 lightmap = s.lightmap.rgb;\n #if CC_USE_HDR\n lightmap.rgb *= cc_exposure.w * cc_exposure.x;\n #endif\n #if CC_USE_LIGHTMAP == LIGHT_MAP_TYPE_INDIRECT_OCCLUSION\n shadow *= s.lightmap.a;\n finalColor += diffuse * lightmap.rgb;\n #else\n finalColor += diffuse * lightmap.rgb * shadow;\n #endif\n s.occlusion *= s.lightmap_test;\n #endif\n #if !CC_DISABLE_DIRECTIONAL_LIGHT\n float NV = max(abs(dot(N, V)), 0.0);\n specular = BRDFApprox(specular, s.roughness, NV);\n vec3 H = normalize(L + V);\n float NH = max(dot(N, H), 0.0);\n vec3 lightingColor = NL * cc_mainLitColor.rgb * cc_mainLitColor.w;\n vec3 diffuseContrib = diffuse / PI;\n vec3 specularContrib = specular * CalcSpecular(s.roughness, NH, H, N);\n vec3 dirlightContrib = (diffuseContrib + specularContrib);\n dirlightContrib *= shadow;\n finalColor += lightingColor * dirlightContrib;\n #endif\n float fAmb = max(EPSILON, 0.5 - N.y * 0.5);\n vec3 ambDiff = mix(cc_ambientSky.rgb, cc_ambientGround.rgb, fAmb);\n vec3 env = vec3(0.0), rotationDir;\n #if CC_USE_IBL\n #if CC_USE_DIFFUSEMAP && !CC_USE_LIGHT_PROBE\n rotationDir = RotationVecFromAxisY(N.xyz, cc_surfaceTransform.z, cc_surfaceTransform.w);\n vec4 diffuseMap = texture(cc_diffuseMap, rotationDir);\n #if CC_USE_DIFFUSEMAP == 2\n ambDiff = unpackRGBE(diffuseMap);\n #else\n ambDiff = SRGBToLinear(diffuseMap.rgb);\n #endif\n #endif\n #if !CC_USE_REFLECTION_PROBE\n vec3 R = normalize(reflect(-V, N));\n rotationDir = RotationVecFromAxisY(R.xyz, cc_surfaceTransform.z, cc_surfaceTransform.w);\n #if USE_REFLECTION_DENOISE && !CC_IBL_CONVOLUTED\n env = GetEnvReflectionWithMipFiltering(rotationDir, s.roughness, cc_ambientGround.w, 0.6, vec2(0.0));\n #else\n vec4 envmap = fragTextureLod(cc_environment, rotationDir, s.roughness * (cc_ambientGround.w - 1.0));\n #if CC_USE_IBL == 2\n env = unpackRGBE(envmap);\n #else\n env = SRGBToLinear(envmap.rgb);\n #endif\n #endif\n #endif\n #endif\n float lightIntensity = cc_ambientSky.w;\n #if CC_USE_REFLECTION_PROBE\n vec4 probe = vec4(0.0);\n vec3 R = normalize(reflect(-V, N));\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_CUBE\n if(s.reflectionProbeId < 0.0){\n env = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2);\n }else{\n vec3 centerPos, boxHalfSize;\n float mipCount;\n GetCubeReflectionProbeData(centerPos, boxHalfSize, mipCount, s.reflectionProbeId);\n vec4 fixedR = CalculateBoxProjectedDirection(R, position, centerPos, boxHalfSize);\n env = mix(SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2) * lightIntensity,\n SampleReflectionProbe(cc_reflectionProbeCubemap, fixedR.xyz, s.roughness, mipCount, isReflectProbeUsingRGBE(s.reflectionProbeId)), fixedR.w);\n }\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_PLANAR\n if(s.reflectionProbeId < 0.0){\n vec2 screenUV = GetPlanarReflectScreenUV(s.position, cc_matViewProj, cc_cameraPos.w, V, R);\n probe = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, 1.0);\n }else{\n vec4 plane;\n float planarReflectionDepthScale, mipCount;\n GetPlanarReflectionProbeData(plane, planarReflectionDepthScale, mipCount, s.reflectionProbeId);\n R = normalize(CalculateReflectDirection(N, V, max(abs(dot(N, V)), 0.0)));\n vec3 worldPosOffset = CalculatePlanarReflectPositionOnPlane(N, V, s.position, plane, cc_cameraPos.xyz, planarReflectionDepthScale);\n vec2 screenUV = GetPlanarReflectScreenUV(worldPosOffset, cc_matViewProj, cc_cameraPos.w, V, R);\n probe = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, mipCount);\n }\n env = unpackRGBE(probe);\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND || CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n if (s.reflectionProbeId < 0.0) {\n env = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2);\n } else {\n vec3 centerPos, boxHalfSize;\n float mipCount;\n GetCubeReflectionProbeData(centerPos, boxHalfSize, mipCount, s.reflectionProbeId);\n vec4 fixedR = CalculateBoxProjectedDirection(R, s.position, centerPos, boxHalfSize);\n env = SampleReflectionProbe(cc_reflectionProbeCubemap, fixedR.xyz, s.roughness, mipCount, isReflectProbeUsingRGBE(s.reflectionProbeId));\n if (s.reflectionProbeBlendId < 0.0) {\n vec3 skyBoxEnv = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2) * lightIntensity;\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n env = mix(env, skyBoxEnv, s.reflectionProbeBlendFactor);\n #else\n env = mix(skyBoxEnv, env, fixedR.w);\n #endif\n } else {\n vec3 centerPosBlend, boxHalfSizeBlend;\n float mipCountBlend;\n GetBlendCubeReflectionProbeData(centerPosBlend, boxHalfSizeBlend, mipCountBlend, s.reflectionProbeBlendId);\n vec4 fixedRBlend = CalculateBoxProjectedDirection(R, s.position, centerPosBlend, boxHalfSizeBlend);\n vec3 probe1 = SampleReflectionProbe(cc_reflectionProbeBlendCubemap, fixedRBlend.xyz, s.roughness, mipCountBlend, isBlendReflectProbeUsingRGBE(s.reflectionProbeBlendId));\n env = mix(env, probe1, s.reflectionProbeBlendFactor);\n }\n }\n #endif\n #endif\n #if CC_USE_REFLECTION_PROBE\n lightIntensity = s.reflectionProbeId < 0.0 ? lightIntensity : 1.0;\n #endif\n finalColor += env * lightIntensity * specular * s.occlusion;\n #if CC_USE_LIGHT_PROBE\n finalColor += SHEvaluate(N) * diffuse * s.occlusion;\n #endif\n finalColor += ambDiff.rgb * cc_ambientSky.w * diffuse * s.occlusion;\n finalColor += s.emissive;\n return vec4(finalColor, s.albedo.a);\n }\n #if CC_PIPELINE_TYPE == 0\n #define LIGHTS_PER_PASS 1\n #else\n #define LIGHTS_PER_PASS 10\n #endif\n #if CC_ENABLE_CLUSTERED_LIGHT_CULLING == 0\n layout(std140) uniform CCForwardLight {\n highp vec4 cc_lightPos[LIGHTS_PER_PASS];\n vec4 cc_lightColor[LIGHTS_PER_PASS];\n vec4 cc_lightSizeRangeAngle[LIGHTS_PER_PASS];\n vec4 cc_lightDir[LIGHTS_PER_PASS];\n vec4 cc_lightBoundingSizeVS[LIGHTS_PER_PASS];\n };\n #endif\n float SmoothDistAtt (float distSqr, float invSqrAttRadius) {\n float factor = distSqr * invSqrAttRadius;\n float smoothFactor = clamp(1.0 - factor * factor, 0.0, 1.0);\n return smoothFactor * smoothFactor;\n }\n float GetDistAtt (float distSqr, float invSqrAttRadius) {\n float attenuation = 1.0 / max(distSqr, 0.01*0.01);\n attenuation *= SmoothDistAtt(distSqr , invSqrAttRadius);\n return attenuation;\n }\n float GetAngleAtt (vec3 L, vec3 litDir, float litAngleScale, float litAngleOffset) {\n float cd = dot(litDir, L);\n float attenuation = clamp(cd * litAngleScale + litAngleOffset, 0.0, 1.0);\n return (attenuation * attenuation);\n }\n float GetOutOfRange (vec3 worldPos, vec3 lightPos, vec3 lookAt, vec3 right, vec3 BoundingHalfSizeVS) {\n vec3 v = vec3(0.0);\n vec3 up = cross(right, lookAt);\n worldPos -= lightPos;\n v.x = dot(worldPos, right);\n v.y = dot(worldPos, up);\n v.z = dot(worldPos, lookAt);\n vec3 result = step(abs(v), BoundingHalfSizeVS);\n return result.x * result.y * result.z;\n }\n #if CC_ENABLE_CLUSTERED_LIGHT_CULLING == 0\n vec4 CCStandardShadingAdditive (StandardSurface s, vec4 shadowPos) {\n vec3 position;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n position = unpackHighpData(s.position, s.position_fract_part);\n #else\n position = s.position;\n #endif\n vec3 diffuse = s.albedo.rgb * (1.0 - s.metallic);\n vec3 specular = mix(vec3(0.04), s.albedo.rgb, s.metallic);\n vec3 diffuseContrib = diffuse / PI;\n vec3 N = normalize(s.normal);\n vec3 V = normalize(cc_cameraPos.xyz - position);\n float NV = max(abs(dot(N, V)), 0.0);\n specular = BRDFApprox(specular, s.roughness, NV);\n vec3 finalColor = vec3(0.0);\n int numLights = CC_PIPELINE_TYPE == 0 ? LIGHTS_PER_PASS : int(cc_lightDir[0].w);\n for (int i = 0; i < LIGHTS_PER_PASS; i++) {\n if (i >= numLights) break;\n vec3 SLU = IS_RANGED_DIRECTIONAL_LIGHT(cc_lightPos[i].w) ? -cc_lightDir[i].xyz : cc_lightPos[i].xyz - position;\n vec3 SL = normalize(SLU);\n vec3 SH = normalize(SL + V);\n float SNL = max(dot(N, SL), 0.0);\n float SNH = max(dot(N, SH), 0.0);\n vec3 lspec = specular * CalcSpecular(s.roughness, SNH, SH, N);\n float illum = 1.0;\n float att = 1.0;\n if (IS_RANGED_DIRECTIONAL_LIGHT(cc_lightPos[i].w)) {\n att = GetOutOfRange(position, cc_lightPos[i].xyz, cc_lightDir[i].xyz, cc_lightSizeRangeAngle[i].xyz, cc_lightBoundingSizeVS[i].xyz);\n } else {\n float distSqr = dot(SLU, SLU);\n float litRadius = cc_lightSizeRangeAngle[i].x;\n float litRadiusSqr = litRadius * litRadius;\n illum = (IS_POINT_LIGHT(cc_lightPos[i].w) || IS_RANGED_DIRECTIONAL_LIGHT(cc_lightPos[i].w)) ? 1.0 : litRadiusSqr / max(litRadiusSqr, distSqr);\n float attRadiusSqrInv = 1.0 / max(cc_lightSizeRangeAngle[i].y, 0.01);\n attRadiusSqrInv *= attRadiusSqrInv;\n att = GetDistAtt(distSqr, attRadiusSqrInv);\n if (IS_SPOT_LIGHT(cc_lightPos[i].w)) {\n float cosInner = max(dot(-cc_lightDir[i].xyz, SL), 0.01);\n float cosOuter = cc_lightSizeRangeAngle[i].z;\n float litAngleScale = 1.0 / max(0.001, cosInner - cosOuter);\n float litAngleOffset = -cosOuter * litAngleScale;\n att *= GetAngleAtt(SL, -cc_lightDir[i].xyz, litAngleScale, litAngleOffset);\n }\n }\n float shadow = 1.0;\n #if CC_RECEIVE_SHADOW && CC_SHADOW_TYPE == 2\n if (IS_SPOT_LIGHT(cc_lightPos[i].w) && cc_lightSizeRangeAngle[i].w > 0.0) {\n shadow = CCSpotShadowFactorBase(shadowPos, position, s.shadowBias);\n }\n #endif\n finalColor += SNL * cc_lightColor[i].rgb * shadow * cc_lightColor[i].w * illum * att * (diffuseContrib + lspec);\n }\n return vec4(finalColor, 0.0);\n }\n #endif\n#if CC_ENABLE_CLUSTERED_LIGHT_CULLING == 1\n layout(std430, binding = 0) readonly buffer b_ccLightsBuffer { vec4 b_ccLights[]; };\n layout(std430, binding = 1) readonly buffer b_clusterLightIndicesBuffer { uint b_clusterLightIndices[]; };\n layout(std430, binding = 2) readonly buffer b_clusterLightGridBuffer { uvec4 b_clusterLightGrid[]; };\n struct CCLight\n {\n vec4 cc_lightPos;\n vec4 cc_lightColor;\n vec4 cc_lightSizeRangeAngle;\n vec4 cc_lightDir;\n vec4 cc_lightBoundingSizeVS;\n };\n struct Cluster\n {\n vec3 minBounds;\n vec3 maxBounds;\n };\n struct LightGrid\n {\n uint offset;\n uint ccLights;\n };\n CCLight getCCLight(uint i)\n {\n CCLight light;\n light.cc_lightPos = b_ccLights[5u * i + 0u];\n light.cc_lightColor = b_ccLights[5u * i + 1u];\n light.cc_lightSizeRangeAngle = b_ccLights[5u * i + 2u];\n light.cc_lightDir = b_ccLights[5u * i + 3u];\n light.cc_lightBoundingSizeVS = b_ccLights[5u * i + 4u];\n return light;\n }\n LightGrid getLightGrid(uint cluster)\n {\n uvec4 gridvec = b_clusterLightGrid[cluster];\n LightGrid grid;\n grid.offset = gridvec.x;\n grid.ccLights = gridvec.y;\n return grid;\n }\n uint getGridLightIndex(uint start, uint offset)\n {\n return b_clusterLightIndices[start + offset];\n }\n uint getClusterZIndex(vec4 worldPos)\n {\n float scale = float(24u) / log(cc_nearFar.y / cc_nearFar.x);\n float bias = -(float(24u) * log(cc_nearFar.x) / log(cc_nearFar.y / cc_nearFar.x));\n float eyeDepth = -(cc_matView * worldPos).z;\n uint zIndex = uint(max(log(eyeDepth) * scale + bias, 0.0));\n return zIndex;\n }\n uint getClusterIndex(vec4 fragCoord, vec4 worldPos)\n {\n uint zIndex = getClusterZIndex(worldPos);\n float clusterSizeX = ceil(cc_viewPort.z / float(16u));\n float clusterSizeY = ceil(cc_viewPort.w / float(8u));\n uvec3 indices = uvec3(uvec2(fragCoord.xy / vec2(clusterSizeX, clusterSizeY)), zIndex);\n uint cluster = (16u * 8u) * indices.z + 16u * indices.y + indices.x;\n return cluster;\n }\n vec4 CCClusterShadingAdditive (StandardSurface s, vec4 shadowPos) {\n vec3 diffuse = s.albedo.rgb * (1.0 - s.metallic);\n vec3 specular = mix(vec3(0.04), s.albedo.rgb, s.metallic);\n vec3 diffuseContrib = diffuse / PI;\n vec3 position;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n position = unpackHighpData(s.position, s.position_fract_part);\n #else\n position = s.position;\n #endif\n vec3 N = normalize(s.normal);\n vec3 V = normalize(cc_cameraPos.xyz - position);\n float NV = max(abs(dot(N, V)), 0.001);\n specular = BRDFApprox(specular, s.roughness, NV);\n vec3 finalColor = vec3(0.0);\n uint cluster = getClusterIndex(gl_FragCoord, vec4(position, 1.0));\n LightGrid grid = getLightGrid(cluster);\n uint numLights = grid.ccLights;\n for (uint i = 0u; i < 200u; i++) {\n if (i >= numLights) break;\n uint lightIndex = getGridLightIndex(grid.offset, i);\n CCLight light = getCCLight(lightIndex);\n vec3 SLU = light.cc_lightPos.xyz - position;\n vec3 SL = normalize(SLU);\n vec3 SH = normalize(SL + V);\n float SNL = max(dot(N, SL), 0.001);\n float SNH = max(dot(N, SH), 0.0);\n float distSqr = dot(SLU, SLU);\n float litRadius = light.cc_lightSizeRangeAngle.x;\n float litRadiusSqr = litRadius * litRadius;\n float illum = PI * (litRadiusSqr / max(litRadiusSqr , distSqr));\n float attRadiusSqrInv = 1.0 / max(light.cc_lightSizeRangeAngle.y, 0.01);\n attRadiusSqrInv *= attRadiusSqrInv;\n float att = GetDistAtt(distSqr, attRadiusSqrInv);\n vec3 lspec = specular * CalcSpecular(s.roughness, SNH, SH, N);\n if (IS_SPOT_LIGHT(light.cc_lightPos.w)) {\n float cosInner = max(dot(-light.cc_lightDir.xyz, SL), 0.01);\n float cosOuter = light.cc_lightSizeRangeAngle.z;\n float litAngleScale = 1.0 / max(0.001, cosInner - cosOuter);\n float litAngleOffset = -cosOuter * litAngleScale;\n att *= GetAngleAtt(SL, -light.cc_lightDir.xyz, litAngleScale, litAngleOffset);\n }\n vec3 lightColor = light.cc_lightColor.rgb;\n float shadow = 1.0;\n #if CC_RECEIVE_SHADOW && CC_SHADOW_TYPE == 2\n if (IS_SPOT_LIGHT(light.cc_lightPos.w) && light.cc_lightSizeRangeAngle.w > 0.0) {\n shadow = CCSpotShadowFactorBase(shadowPos, position, s.shadowBias);\n }\n #endif\n lightColor *= shadow;\n finalColor += SNL * lightColor * light.cc_lightColor.w * illum * att * (diffuseContrib + lspec);\n }\n return vec4(finalColor, 0.0);\n }\n#endif\n vec3 ACESToneMap (vec3 color) {\n color = min(color, vec3(8.0));\n const float A = 2.51;\n const float B = 0.03;\n const float C = 2.43;\n const float D = 0.59;\n const float E = 0.14;\n return (color * (A * color + B)) / (color * (C * color + D) + E);\n }\n vec4 CCFragOutput (vec4 color) {\n #if CC_USE_RGBE_OUTPUT\n color = packRGBE(color.rgb);\n #elif !CC_USE_FLOAT_OUTPUT\n #if CC_USE_HDR && CC_TONE_MAPPING_TYPE == HDR_TONE_MAPPING_ACES\n color.rgb = ACESToneMap(color.rgb);\n #endif\n color.rgb = LinearToSRGB(color.rgb);\n #endif\n return color;\n }\n #if CC_USE_FOG != 4\n float LinearFog(vec4 pos, vec3 cameraPos, float fogStart, float fogEnd) {\n vec4 wPos = pos;\n float cam_dis = distance(cameraPos, wPos.xyz);\n return clamp((fogEnd - cam_dis) / (fogEnd - fogStart), 0., 1.);\n }\n float ExpFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * fogDensity);\n return f;\n }\n float ExpSquaredFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * cam_dis * fogDensity * fogDensity);\n return f;\n }\n float LayeredFog(vec4 pos, vec3 cameraPos, float fogTop, float fogRange, float fogAtten) {\n vec4 wPos = pos;\n vec3 camWorldProj = cameraPos.xyz;\n camWorldProj.y = 0.;\n vec3 worldPosProj = wPos.xyz;\n worldPosProj.y = 0.;\n float fDeltaD = distance(worldPosProj, camWorldProj) / fogAtten * 2.0;\n float fDeltaY, fDensityIntegral;\n if (cameraPos.y > fogTop) {\n if (wPos.y < fogTop) {\n fDeltaY = (fogTop - wPos.y) / fogRange * 2.0;\n fDensityIntegral = fDeltaY * fDeltaY * 0.5;\n }\n else {\n fDeltaY = 0.;\n fDensityIntegral = 0.;\n }\n }\n else {\n if (wPos.y < fogTop) {\n float fDeltaA = (fogTop - cameraPos.y) / fogRange * 2.;\n float fDeltaB = (fogTop - wPos.y) / fogRange * 2.;\n fDeltaY = abs(fDeltaA - fDeltaB);\n fDensityIntegral = abs((fDeltaA * fDeltaA * 0.5) - (fDeltaB * fDeltaB * 0.5));\n }\n else {\n fDeltaY = abs(fogTop - cameraPos.y) / fogRange * 2.;\n fDensityIntegral = abs(fDeltaY * fDeltaY * 0.5);\n }\n }\n float fDensity;\n if (fDeltaY != 0.) {\n fDensity = (sqrt(1.0 + ((fDeltaD / fDeltaY) * (fDeltaD / fDeltaY)))) * fDensityIntegral;\n }\n else {\n fDensity = 0.;\n }\n float f = exp(-fDensity);\n return f;\n }\n #endif\n void CC_TRANSFER_FOG_BASE(vec4 pos, out float factor)\n {\n #if CC_USE_FOG == 0\n \tfactor = LinearFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.y);\n #elif CC_USE_FOG == 1\n \tfactor = ExpFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n #elif CC_USE_FOG == 2\n \tfactor = ExpSquaredFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n #elif CC_USE_FOG == 3\n \tfactor = LayeredFog(pos, cc_cameraPos.xyz, cc_fogAdd.x, cc_fogAdd.y, cc_fogAdd.z);\n #else\n \tfactor = 1.0;\n #endif\n }\n void CC_APPLY_FOG_BASE(inout vec4 color, float factor) {\n \tcolor = vec4(mix(cc_fogColor.rgb, color.rgb, factor), color.a);\n }\n vec2 signNotZero(vec2 v) {\n return vec2((v.x >= 0.0) ? +1.0 : -1.0, (v.y >= 0.0) ? +1.0 : -1.0);\n }\n vec3 oct_to_float32x3(vec2 e) {\n vec3 v = vec3(e.xy, 1.0 - abs(e.x) - abs(e.y));\n if (v.z < 0.0) v.xy = (1.0 - abs(v.yx)) * signNotZero(v.xy);\n return normalize(v);\n }\n in vec2 v_uv;\n uniform sampler2D albedoMap;\n uniform sampler2D normalMap;\n uniform sampler2D emissiveMap;\n uniform sampler2D depthStencil;\n layout(location = 0) out vec4 fragColor;\n vec4 screen2WS(vec3 coord) {\n vec3 ndc = vec3(\n 2.0 * (coord.x - cc_viewPort.x) / cc_viewPort.z - 1.0,\n 2.0 * (coord.y - cc_viewPort.y) / cc_viewPort.w - 1.0,\n 2.0 * coord.z - 1.0);\n CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(ndc.y);\n return GetWorldPosFromNDCPosRH(ndc, cc_matProj, cc_matViewProjInv);\n }\n void main () {\n StandardSurface s;\n vec4 albedo = texture(albedoMap, v_uv);\n vec4 normal = texture(normalMap, v_uv);\n vec4 emissive = texture(emissiveMap, v_uv);\n float depth = texture(depthStencil, v_uv).x;\n s.albedo = albedo;\n vec3 position = screen2WS(vec3(gl_FragCoord.xy, depth)).xyz;\n s.position = position;\n s.roughness = normal.z;\n s.normal = oct_to_float32x3(normal.xy);\n s.specularIntensity = 0.5;\n s.metallic = normal.w;\n s.emissive = emissive.xyz;\n s.occlusion = emissive.w;\n#if CC_RECEIVE_SHADOW\n s.shadowBias = vec2(0, 0);\n#endif\n float fogFactor;\n CC_TRANSFER_FOG_BASE(vec4(position, 1), fogFactor);\n vec4 shadowPos;\n shadowPos = cc_matLightViewProj * vec4(position, 1);\n vec4 color = CCStandardShadingBase(s, shadowPos) +\n#if CC_ENABLE_CLUSTERED_LIGHT_CULLING == 1\n CCClusterShadingAdditive(s, shadowPos);\n#else\n CCStandardShadingAdditive(s, shadowPos);\n#endif\n CC_APPLY_FOG_BASE(color, fogFactor);\n color = CCFragOutput(color);\n#if CC_USE_DEBUG_VIEW == CC_SURFACES_DEBUG_VIEW_SINGLE\n color = vec4(albedoMap.rgb, 1.0);\n#endif\n fragColor = color;\n }"
- },
- "glsl1": {
- "vert": "\nprecision highp float;\n#define QUATER_PI 0.78539816340\n#define HALF_PI 1.57079632679\n#define PI 3.14159265359\n#define PI2 6.28318530718\n#define PI4 12.5663706144\n#define INV_QUATER_PI 1.27323954474\n#define INV_HALF_PI 0.63661977237\n#define INV_PI 0.31830988618\n#define INV_PI2 0.15915494309\n#define INV_PI4 0.07957747155\n#define EPSILON 1e-6\n#define EPSILON_LOWP 1e-4\n#define LOG2 1.442695\n#define EXP_VALUE 2.71828183\n#define FP_MAX 65504.0\n#define FP_SCALE 0.0009765625\n#define FP_SCALE_INV 1024.0\n#define GRAY_VECTOR vec3(0.299, 0.587, 0.114)\n#define LIGHT_MAP_TYPE_DISABLED 0\n#define LIGHT_MAP_TYPE_ALL_IN_ONE 1\n#define LIGHT_MAP_TYPE_INDIRECT_OCCLUSION 2\n#define REFLECTION_PROBE_TYPE_NONE 0\n#define REFLECTION_PROBE_TYPE_CUBE 1\n#define REFLECTION_PROBE_TYPE_PLANAR 2\n#define REFLECTION_PROBE_TYPE_BLEND 3\n#define REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX 4\n#define LIGHT_TYPE_DIRECTIONAL 0.0\n#define LIGHT_TYPE_SPHERE 1.0\n#define LIGHT_TYPE_SPOT 2.0\n#define LIGHT_TYPE_POINT 3.0\n#define LIGHT_TYPE_RANGED_DIRECTIONAL 4.0\n#define IS_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_DIRECTIONAL)) < EPSILON_LOWP)\n#define IS_SPHERE_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPHERE)) < EPSILON_LOWP)\n#define IS_SPOT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPOT)) < EPSILON_LOWP)\n#define IS_POINT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_POINT)) < EPSILON_LOWP)\n#define IS_RANGED_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_RANGED_DIRECTIONAL)) < EPSILON_LOWP)\n#define TONE_MAPPING_ACES 0\n#define TONE_MAPPING_LINEAR 1\n#define SURFACES_MAX_TRANSMIT_DEPTH_VALUE 999999.0\n#ifndef CC_SURFACES_DEBUG_VIEW_SINGLE\n #define CC_SURFACES_DEBUG_VIEW_SINGLE 1\n#endif\n#ifndef CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC\n #define CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC 2\n#endif\nstruct StandardVertInput {\n highp vec4 position;\n vec3 normal;\n vec4 tangent;\n};\nattribute vec3 a_position;\nattribute vec3 a_normal;\nattribute vec2 a_texCoord;\nattribute vec4 a_tangent;\n#if CC_USE_SKINNING\n attribute vec4 a_joints;\n attribute vec4 a_weights;\n#endif\n#if USE_INSTANCING\n #if CC_USE_BAKED_ANIMATION\n attribute highp vec4 a_jointAnimInfo;\n #endif\n attribute vec4 a_matWorld0;\n attribute vec4 a_matWorld1;\n attribute vec4 a_matWorld2;\n #if CC_USE_LIGHTMAP\n attribute vec4 a_lightingMapUVParam;\n #endif\n #if CC_USE_REFLECTION_PROBE || CC_RECEIVE_SHADOW\n #if CC_RECEIVE_SHADOW\n #endif\n attribute vec4 a_localShadowBiasAndProbeId;\n #endif\n #if CC_USE_REFLECTION_PROBE\n attribute vec4 a_reflectionProbeData;\n #endif\n #if CC_USE_LIGHT_PROBE\n attribute vec4 a_sh_linear_const_r;\n attribute vec4 a_sh_linear_const_g;\n attribute vec4 a_sh_linear_const_b;\n #endif\n#endif\n#if CC_USE_MORPH\n attribute float a_vertexId;\n#endif\nuniform highp vec4 cc_cameraPos;\nvarying vec2 v_uv;\nvoid main () {\n vec4 position;\n position = vec4(a_position, 1.0);\n position.xy = cc_cameraPos.w == 0.0 ? vec2(position.xy.x, -position.xy.y) : position.xy;\n gl_Position = vec4(position.x, position.y, 1.0, 1.0);\n v_uv = a_texCoord;\n}",
- "frag": "\n#ifdef GL_OES_standard_derivatives\n#extension GL_OES_standard_derivatives: enable\n#endif\n#ifdef GL_EXT_shader_texture_lod\n#extension GL_EXT_shader_texture_lod: enable\n#endif\n precision highp float;\n uniform mediump vec4 cc_probeInfo;\n uniform highp mat4 cc_matView;\n uniform highp mat4 cc_matProj;\n uniform highp mat4 cc_matViewProj;\n uniform highp mat4 cc_matViewProjInv;\n uniform highp vec4 cc_cameraPos;\n uniform mediump vec4 cc_surfaceTransform;\n uniform mediump vec4 cc_exposure;\n uniform mediump vec4 cc_mainLitDir;\n uniform mediump vec4 cc_mainLitColor;\n uniform mediump vec4 cc_ambientSky;\n uniform mediump vec4 cc_ambientGround;\n uniform mediump vec4 cc_fogColor;\n uniform mediump vec4 cc_fogBase;\n uniform mediump vec4 cc_fogAdd;\n uniform mediump vec4 cc_nearFar;\n uniform mediump vec4 cc_viewPort;\n #define QUATER_PI 0.78539816340\n #define HALF_PI 1.57079632679\n #define PI 3.14159265359\n #define PI2 6.28318530718\n #define PI4 12.5663706144\n #define INV_QUATER_PI 1.27323954474\n #define INV_HALF_PI 0.63661977237\n #define INV_PI 0.31830988618\n #define INV_PI2 0.15915494309\n #define INV_PI4 0.07957747155\n #define EPSILON 1e-6\n #define EPSILON_LOWP 1e-4\n #define LOG2 1.442695\n #define EXP_VALUE 2.71828183\n #define FP_MAX 65504.0\n #define FP_SCALE 0.0009765625\n #define FP_SCALE_INV 1024.0\n #define GRAY_VECTOR vec3(0.299, 0.587, 0.114)\n #define LIGHT_MAP_TYPE_DISABLED 0\n #define LIGHT_MAP_TYPE_ALL_IN_ONE 1\n #define LIGHT_MAP_TYPE_INDIRECT_OCCLUSION 2\n #define REFLECTION_PROBE_TYPE_NONE 0\n #define REFLECTION_PROBE_TYPE_CUBE 1\n #define REFLECTION_PROBE_TYPE_PLANAR 2\n #define REFLECTION_PROBE_TYPE_BLEND 3\n #define REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX 4\n #define LIGHT_TYPE_DIRECTIONAL 0.0\n #define LIGHT_TYPE_SPHERE 1.0\n #define LIGHT_TYPE_SPOT 2.0\n #define LIGHT_TYPE_POINT 3.0\n #define LIGHT_TYPE_RANGED_DIRECTIONAL 4.0\n #define IS_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_DIRECTIONAL)) < EPSILON_LOWP)\n #define IS_SPHERE_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPHERE)) < EPSILON_LOWP)\n #define IS_SPOT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPOT)) < EPSILON_LOWP)\n #define IS_POINT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_POINT)) < EPSILON_LOWP)\n #define IS_RANGED_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_RANGED_DIRECTIONAL)) < EPSILON_LOWP)\n #define TONE_MAPPING_ACES 0\n #define TONE_MAPPING_LINEAR 1\n #define SURFACES_MAX_TRANSMIT_DEPTH_VALUE 999999.0\n #ifndef CC_SURFACES_DEBUG_VIEW_SINGLE\n #define CC_SURFACES_DEBUG_VIEW_SINGLE 1\n #endif\n #ifndef CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC\n #define CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC 2\n #endif\n vec3 SRGBToLinear (vec3 gamma) {\n #ifdef CC_USE_SURFACE_SHADER\n #if CC_USE_DEBUG_VIEW == CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC && CC_SURFACES_ENABLE_DEBUG_VIEW\n if (!IS_DEBUG_VIEW_COMPOSITE_ENABLE_GAMMA_CORRECTION) {\n return gamma;\n }\n #endif\n #endif\n return gamma * gamma;\n }\n vec3 LinearToSRGB(vec3 linear) {\n #ifdef CC_USE_SURFACE_SHADER\n #if CC_USE_DEBUG_VIEW == CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC && CC_SURFACES_ENABLE_DEBUG_VIEW\n if (!IS_DEBUG_VIEW_COMPOSITE_ENABLE_GAMMA_CORRECTION) {\n return linear;\n }\n #endif\n #endif\n return sqrt(linear);\n }\n uniform highp mat4 cc_matLightView;\n uniform highp mat4 cc_matLightViewProj;\n uniform highp vec4 cc_shadowInvProjDepthInfo;\n uniform highp vec4 cc_shadowProjDepthInfo;\n uniform highp vec4 cc_shadowProjInfo;\n uniform mediump vec4 cc_shadowNFLSInfo;\n uniform mediump vec4 cc_shadowWHPBInfo;\n #if CC_SUPPORT_CASCADED_SHADOW_MAP\n uniform highp vec4 cc_csmViewDir0[4];\n uniform highp vec4 cc_csmViewDir1[4];\n uniform highp vec4 cc_csmViewDir2[4];\n uniform highp vec4 cc_csmAtlas[4];\n uniform highp mat4 cc_matCSMViewProj[4];\n uniform highp vec4 cc_csmProjDepthInfo[4];\n uniform highp vec4 cc_csmProjInfo[4];\n uniform highp vec4 cc_csmSplitsInfo;\n #endif\n #if defined(CC_USE_METAL) || defined(CC_USE_WGPU)\n #define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y) y = -y\n #else\n #define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y)\n #endif\n vec2 GetPlanarReflectScreenUV(vec3 worldPos, mat4 matVirtualCameraViewProj, float flipNDCSign, vec3 viewDir, vec3 reflectDir)\n {\n vec4 clipPos = matVirtualCameraViewProj * vec4(worldPos, 1.0);\n vec2 screenUV = clipPos.xy / clipPos.w * 0.5 + 0.5;\n screenUV = vec2(1.0 - screenUV.x, screenUV.y);\n screenUV = flipNDCSign == 1.0 ? vec2(screenUV.x, 1.0 - screenUV.y) : screenUV;\n return screenUV;\n }\n float GetCameraDepthRH(float depthHS, mat4 matProj)\n {\n return -matProj[3][2] / (depthHS + matProj[2][2]);\n }\n float GetCameraDepthRH(float depthHS, float matProj32, float matProj22)\n {\n return -matProj32 / (depthHS + matProj22);\n }\n vec4 GetWorldPosFromNDCPosRH(vec3 posHS, mat4 matProj, mat4 matViewProjInv)\n {\n float w = -GetCameraDepthRH(posHS.z, matProj);\n return matViewProjInv * vec4(posHS * w, w);\n }\n float GetLinearDepthFromViewSpace(vec3 viewPos, float near, float far) {\n float dist = length(viewPos);\n return (dist - near) / (far - near);\n }\n vec3 RotationVecFromAxisY(vec3 v, float cosTheta, float sinTheta)\n {\n vec3 result;\n result.x = dot(v, vec3(cosTheta, 0.0, -sinTheta));\n result.y = v.y;\n result.z = dot(v, vec3(sinTheta, 0.0, cosTheta));\n return result;\n }\n vec3 RotationVecFromAxisY(vec3 v, float rotateAngleArc)\n {\n return RotationVecFromAxisY(v, cos(rotateAngleArc), sin(rotateAngleArc));\n }\n float CCGetLinearDepth(vec3 worldPos, float viewSpaceBias) {\n \tvec4 viewPos = cc_matLightView * vec4(worldPos.xyz, 1.0);\n viewPos.z += viewSpaceBias;\n \treturn GetLinearDepthFromViewSpace(viewPos.xyz, cc_shadowNFLSInfo.x, cc_shadowNFLSInfo.y);\n }\n float CCGetLinearDepth(vec3 worldPos) {\n \treturn CCGetLinearDepth(worldPos, 0.0);\n }\n #if CC_RECEIVE_SHADOW\n uniform highp sampler2D cc_shadowMap;\n uniform highp sampler2D cc_spotShadowMap;\n #define UnpackBitFromFloat(value, bit) (mod(floor(value / pow(10.0, float(bit))), 10.0) > 0.0)\n highp float unpackHighpData (float mainPart, float modPart) {\n highp float data = mainPart;\n return data + modPart;\n }\n highp float unpackHighpData (float mainPart, float modPart, const float modValue) {\n highp float data = mainPart * modValue;\n return data + modPart * modValue;\n }\n highp vec2 unpackHighpData (vec2 mainPart, vec2 modPart) {\n highp vec2 data = mainPart;\n return data + modPart;\n }\n highp vec2 unpackHighpData (vec2 mainPart, vec2 modPart, const float modValue) {\n highp vec2 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n highp vec3 unpackHighpData (vec3 mainPart, vec3 modPart) {\n highp vec3 data = mainPart;\n return data + modPart;\n }\n highp vec3 unpackHighpData (vec3 mainPart, vec3 modPart, const float modValue) {\n highp vec3 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n highp vec4 unpackHighpData (vec4 mainPart, vec4 modPart) {\n highp vec4 data = mainPart;\n return data + modPart;\n }\n highp vec4 unpackHighpData (vec4 mainPart, vec4 modPart, const float modValue) {\n highp vec4 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n float NativePCFShadowFactorHard (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n #if CC_SHADOWMAP_FORMAT == 1\n return step(shadowNDCPos.z, dot(texture2D(shadowMap, shadowNDCPos.xy), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n return step(shadowNDCPos.z, texture2D(shadowMap, shadowNDCPos.xy).x);\n #endif\n }\n float NativePCFShadowFactorSoft (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n vec2 shadowNDCPos_offset = shadowNDCPos.xy + oneTap;\n float block0, block1, block2, block3;\n #if CC_SHADOWMAP_FORMAT == 1\n block0 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block1 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos_offset.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block0 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)).x);\n block1 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos.y)).x);\n block2 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset.y)).x);\n block3 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos_offset.y)).x);\n #endif\n float coefX = mod(shadowNDCPos.x, oneTap.x) * shadowMapResolution.x;\n float resultX = mix(block0, block1, coefX);\n float resultY = mix(block2, block3, coefX);\n float coefY = mod(shadowNDCPos.y, oneTap.y) * shadowMapResolution.y;\n return mix(resultX, resultY, coefY);\n }\n float NativePCFShadowFactorSoft3X (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n float shadowNDCPos_offset_L = shadowNDCPos.x - oneTap.x;\n float shadowNDCPos_offset_R = shadowNDCPos.x + oneTap.x;\n float shadowNDCPos_offset_U = shadowNDCPos.y - oneTap.y;\n float shadowNDCPos_offset_D = shadowNDCPos.y + oneTap.y;\n float block0, block1, block2, block3, block4, block5, block6, block7, block8;\n #if CC_SHADOWMAP_FORMAT == 1\n block0 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block1 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block4 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block5 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block6 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block7 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block8 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block0 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_U)).x);\n block1 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_U)).x);\n block2 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_U)).x);\n block3 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos.y)).x);\n block4 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)).x);\n block5 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos.y)).x);\n block6 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_D)).x);\n block7 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_D)).x);\n block8 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_D)).x);\n #endif\n float coefX = mod(shadowNDCPos.x, oneTap.x) * shadowMapResolution.x;\n float coefY = mod(shadowNDCPos.y, oneTap.y) * shadowMapResolution.y;\n float shadow = 0.0;\n float resultX = mix(block0, block1, coefX);\n float resultY = mix(block3, block4, coefX);\n shadow += mix(resultX , resultY, coefY);\n resultX = mix(block1, block2, coefX);\n resultY = mix(block4, block5, coefX);\n shadow += mix(resultX , resultY, coefY);\n resultX = mix(block3, block4, coefX);\n resultY = mix(block6, block7, coefX);\n shadow += mix(resultX, resultY, coefY);\n resultX = mix(block4, block5, coefX);\n resultY = mix(block7, block8, coefX);\n shadow += mix(resultX, resultY, coefY);\n return shadow * 0.25;\n }\n float NativePCFShadowFactorSoft5X (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n vec2 twoTap = oneTap * 2.0;\n vec2 offset1 = shadowNDCPos.xy + vec2(-twoTap.x, -twoTap.y);\n vec2 offset2 = shadowNDCPos.xy + vec2(-oneTap.x, -twoTap.y);\n vec2 offset3 = shadowNDCPos.xy + vec2(0.0, -twoTap.y);\n vec2 offset4 = shadowNDCPos.xy + vec2(oneTap.x, -twoTap.y);\n vec2 offset5 = shadowNDCPos.xy + vec2(twoTap.x, -twoTap.y);\n vec2 offset6 = shadowNDCPos.xy + vec2(-twoTap.x, -oneTap.y);\n vec2 offset7 = shadowNDCPos.xy + vec2(-oneTap.x, -oneTap.y);\n vec2 offset8 = shadowNDCPos.xy + vec2(0.0, -oneTap.y);\n vec2 offset9 = shadowNDCPos.xy + vec2(oneTap.x, -oneTap.y);\n vec2 offset10 = shadowNDCPos.xy + vec2(twoTap.x, -oneTap.y);\n vec2 offset11 = shadowNDCPos.xy + vec2(-twoTap.x, 0.0);\n vec2 offset12 = shadowNDCPos.xy + vec2(-oneTap.x, 0.0);\n vec2 offset13 = shadowNDCPos.xy + vec2(0.0, 0.0);\n vec2 offset14 = shadowNDCPos.xy + vec2(oneTap.x, 0.0);\n vec2 offset15 = shadowNDCPos.xy + vec2(twoTap.x, 0.0);\n vec2 offset16 = shadowNDCPos.xy + vec2(-twoTap.x, oneTap.y);\n vec2 offset17 = shadowNDCPos.xy + vec2(-oneTap.x, oneTap.y);\n vec2 offset18 = shadowNDCPos.xy + vec2(0.0, oneTap.y);\n vec2 offset19 = shadowNDCPos.xy + vec2(oneTap.x, oneTap.y);\n vec2 offset20 = shadowNDCPos.xy + vec2(twoTap.x, oneTap.y);\n vec2 offset21 = shadowNDCPos.xy + vec2(-twoTap.x, twoTap.y);\n vec2 offset22 = shadowNDCPos.xy + vec2(-oneTap.x, twoTap.y);\n vec2 offset23 = shadowNDCPos.xy + vec2(0.0, twoTap.y);\n vec2 offset24 = shadowNDCPos.xy + vec2(oneTap.x, twoTap.y);\n vec2 offset25 = shadowNDCPos.xy + vec2(twoTap.x, twoTap.y);\n float block1, block2, block3, block4, block5, block6, block7, block8, block9, block10, block11, block12, block13, block14, block15, block16, block17, block18, block19, block20, block21, block22, block23, block24, block25;\n #if CC_SHADOWMAP_FORMAT == 1\n block1 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset1), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset2), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset3), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block4 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset4), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block5 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset5), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block6 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset6), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block7 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset7), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block8 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset8), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block9 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset9), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block10 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset10), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block11 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset11), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block12 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset12), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block13 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset13), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block14 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset14), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block15 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset15), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block16 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset16), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block17 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset17), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block18 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset18), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block19 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset19), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block20 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset20), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block21 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset21), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block22 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset22), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block23 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset23), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block24 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset24), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block25 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset25), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block1 = step(shadowNDCPos.z, texture2D(shadowMap, offset1).x);\n block2 = step(shadowNDCPos.z, texture2D(shadowMap, offset2).x);\n block3 = step(shadowNDCPos.z, texture2D(shadowMap, offset3).x);\n block4 = step(shadowNDCPos.z, texture2D(shadowMap, offset4).x);\n block5 = step(shadowNDCPos.z, texture2D(shadowMap, offset5).x);\n block6 = step(shadowNDCPos.z, texture2D(shadowMap, offset6).x);\n block7 = step(shadowNDCPos.z, texture2D(shadowMap, offset7).x);\n block8 = step(shadowNDCPos.z, texture2D(shadowMap, offset8).x);\n block9 = step(shadowNDCPos.z, texture2D(shadowMap, offset9).x);\n block10 = step(shadowNDCPos.z, texture2D(shadowMap, offset10).x);\n block11 = step(shadowNDCPos.z, texture2D(shadowMap, offset11).x);\n block12 = step(shadowNDCPos.z, texture2D(shadowMap, offset12).x);\n block13 = step(shadowNDCPos.z, texture2D(shadowMap, offset13).x);\n block14 = step(shadowNDCPos.z, texture2D(shadowMap, offset14).x);\n block15 = step(shadowNDCPos.z, texture2D(shadowMap, offset15).x);\n block16 = step(shadowNDCPos.z, texture2D(shadowMap, offset16).x);\n block17 = step(shadowNDCPos.z, texture2D(shadowMap, offset17).x);\n block18 = step(shadowNDCPos.z, texture2D(shadowMap, offset18).x);\n block19 = step(shadowNDCPos.z, texture2D(shadowMap, offset19).x);\n block20 = step(shadowNDCPos.z, texture2D(shadowMap, offset20).x);\n block21 = step(shadowNDCPos.z, texture2D(shadowMap, offset21).x);\n block22 = step(shadowNDCPos.z, texture2D(shadowMap, offset22).x);\n block23 = step(shadowNDCPos.z, texture2D(shadowMap, offset23).x);\n block24 = step(shadowNDCPos.z, texture2D(shadowMap, offset24).x);\n block25 = step(shadowNDCPos.z, texture2D(shadowMap, offset25).x);\n #endif\n vec2 coef = fract(shadowNDCPos.xy * shadowMapResolution);\n vec2 v1X1 = mix(vec2(block1, block6), vec2(block2, block7), coef.xx);\n vec2 v1X2 = mix(vec2(block2, block7), vec2(block3, block8), coef.xx);\n vec2 v1X3 = mix(vec2(block3, block8), vec2(block4, block9), coef.xx);\n vec2 v1X4 = mix(vec2(block4, block9), vec2(block5, block10), coef.xx);\n float v1 = mix(v1X1.x, v1X1.y, coef.y) + mix(v1X2.x, v1X2.y, coef.y) + mix(v1X3.x, v1X3.y, coef.y) + mix(v1X4.x, v1X4.y, coef.y);\n vec2 v2X1 = mix(vec2(block6, block11), vec2(block7, block12), coef.xx);\n vec2 v2X2 = mix(vec2(block7, block12), vec2(block8, block13), coef.xx);\n vec2 v2X3 = mix(vec2(block8, block13), vec2(block9, block14), coef.xx);\n vec2 v2X4 = mix(vec2(block9, block14), vec2(block10, block15), coef.xx);\n float v2 = mix(v2X1.x, v2X1.y, coef.y) + mix(v2X2.x, v2X2.y, coef.y) + mix(v2X3.x, v2X3.y, coef.y) + mix(v2X4.x, v2X4.y, coef.y);\n vec2 v3X1 = mix(vec2(block11, block16), vec2(block12, block17), coef.xx);\n vec2 v3X2 = mix(vec2(block12, block17), vec2(block13, block18), coef.xx);\n vec2 v3X3 = mix(vec2(block13, block18), vec2(block14, block19), coef.xx);\n vec2 v3X4 = mix(vec2(block14, block19), vec2(block15, block20), coef.xx);\n float v3 = mix(v3X1.x, v3X1.y, coef.y) + mix(v3X2.x, v3X2.y, coef.y) + mix(v3X3.x, v3X3.y, coef.y) + mix(v3X4.x, v3X4.y, coef.y);\n vec2 v4X1 = mix(vec2(block16, block21), vec2(block17, block22), coef.xx);\n vec2 v4X2 = mix(vec2(block17, block22), vec2(block18, block23), coef.xx);\n vec2 v4X3 = mix(vec2(block18, block23), vec2(block19, block24), coef.xx);\n vec2 v4X4 = mix(vec2(block19, block24), vec2(block20, block25), coef.xx);\n float v4 = mix(v4X1.x, v4X1.y, coef.y) + mix(v4X2.x, v4X2.y, coef.y) + mix(v4X3.x, v4X3.y, coef.y) + mix(v4X4.x, v4X4.y, coef.y);\n float fAvg = (v1 + v2 + v3 + v4) * 0.0625;\n return fAvg;\n }\n bool GetShadowNDCPos(out vec3 shadowNDCPos, vec4 shadowPosWithDepthBias)\n {\n \tshadowNDCPos = shadowPosWithDepthBias.xyz / shadowPosWithDepthBias.w * 0.5 + 0.5;\n \tif (shadowNDCPos.x < 0.0 || shadowNDCPos.x > 1.0 ||\n \t\tshadowNDCPos.y < 0.0 || shadowNDCPos.y > 1.0 ||\n \t\tshadowNDCPos.z < 0.0 || shadowNDCPos.z > 1.0) {\n \t\treturn false;\n \t}\n \tshadowNDCPos.xy = cc_cameraPos.w == 1.0 ? vec2(shadowNDCPos.xy.x, 1.0 - shadowNDCPos.xy.y) : shadowNDCPos.xy;\n \treturn true;\n }\n vec4 ApplyShadowDepthBias_FaceNormal(vec4 shadowPos, vec3 worldNormal, float normalBias, vec3 matViewDir0, vec3 matViewDir1, vec3 matViewDir2, vec2 projScaleXY)\n {\n vec4 newShadowPos = shadowPos;\n if (normalBias > EPSILON_LOWP)\n {\n vec3 viewNormal = vec3(dot(matViewDir0, worldNormal), dot(matViewDir1, worldNormal), dot(matViewDir2, worldNormal));\n if (viewNormal.z < 0.1)\n newShadowPos.xy += viewNormal.xy * projScaleXY * normalBias * clamp(viewNormal.z, 0.001, 0.1);\n }\n return newShadowPos;\n }\n vec4 ApplyShadowDepthBias_FaceNormal(vec4 shadowPos, vec3 worldNormal, float normalBias, mat4 matLightView, vec2 projScaleXY)\n {\n \tvec4 newShadowPos = shadowPos;\n \tif (normalBias > EPSILON_LOWP)\n \t{\n \t\tvec4 viewNormal = matLightView * vec4(worldNormal, 0.0);\n \t\tif (viewNormal.z < 0.1)\n \t\t\tnewShadowPos.xy += viewNormal.xy * projScaleXY * normalBias * clamp(viewNormal.z, 0.001, 0.1);\n \t}\n \treturn newShadowPos;\n }\n float GetViewSpaceDepthFromNDCDepth_Orthgraphic(float NDCDepth, float projScaleZ, float projBiasZ)\n {\n \treturn (NDCDepth - projBiasZ) / projScaleZ;\n }\n float GetViewSpaceDepthFromNDCDepth_Perspective(float NDCDepth, float homogenousDividW, float invProjScaleZ, float invProjBiasZ)\n {\n \treturn NDCDepth * invProjScaleZ + homogenousDividW * invProjBiasZ;\n }\n vec4 ApplyShadowDepthBias_Perspective(vec4 shadowPos, float viewspaceDepthBias)\n {\n \tvec3 viewSpacePos;\n \tviewSpacePos.xy = shadowPos.xy * cc_shadowProjInfo.zw;\n \tviewSpacePos.z = GetViewSpaceDepthFromNDCDepth_Perspective(shadowPos.z, shadowPos.w, cc_shadowInvProjDepthInfo.x, cc_shadowInvProjDepthInfo.y);\n \tviewSpacePos.xyz += cc_shadowProjDepthInfo.z * normalize(viewSpacePos.xyz) * viewspaceDepthBias;\n \tvec4 clipSpacePos;\n \tclipSpacePos.xy = viewSpacePos.xy * cc_shadowProjInfo.xy;\n \tclipSpacePos.zw = viewSpacePos.z * cc_shadowProjDepthInfo.xz + vec2(cc_shadowProjDepthInfo.y, 0.0);\n \t#if CC_SHADOWMAP_USE_LINEAR_DEPTH\n \t\tclipSpacePos.z = GetLinearDepthFromViewSpace(viewSpacePos.xyz, cc_shadowNFLSInfo.x, cc_shadowNFLSInfo.y);\n \t\tclipSpacePos.z = (clipSpacePos.z * 2.0 - 1.0) * clipSpacePos.w;\n \t#endif\n \treturn clipSpacePos;\n }\n vec4 ApplyShadowDepthBias_Orthographic(vec4 shadowPos, float viewspaceDepthBias, float projScaleZ, float projBiasZ)\n {\n \tfloat coeffA = projScaleZ;\n \tfloat coeffB = projBiasZ;\n \tfloat viewSpacePos_z = GetViewSpaceDepthFromNDCDepth_Orthgraphic(shadowPos.z, projScaleZ, projBiasZ);\n \tviewSpacePos_z += viewspaceDepthBias;\n \tvec4 result = shadowPos;\n \tresult.z = viewSpacePos_z * coeffA + coeffB;\n \treturn result;\n }\n vec4 ApplyShadowDepthBias_PerspectiveLinearDepth(vec4 shadowPos, float viewspaceDepthBias, vec3 worldPos)\n {\n shadowPos.z = CCGetLinearDepth(worldPos, viewspaceDepthBias) * 2.0 - 1.0;\n shadowPos.z *= shadowPos.w;\n return shadowPos;\n }\n float CCGetDirLightShadowFactorHard (vec4 shadowPosWithDepthBias) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorHard(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft (vec4 shadowPosWithDepthBias) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft3X (vec4 shadowPosWithDepthBias) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft3X(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft5X (vec4 shadowPosWithDepthBias) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft5X(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetSpotLightShadowFactorHard (vec4 shadowPosWithDepthBias, vec3 worldPos) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorHard(shadowNDCPos, cc_spotShadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetSpotLightShadowFactorSoft (vec4 shadowPosWithDepthBias, vec3 worldPos) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft(shadowNDCPos, cc_spotShadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetSpotLightShadowFactorSoft3X (vec4 shadowPosWithDepthBias, vec3 worldPos) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft3X(shadowNDCPos, cc_spotShadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetSpotLightShadowFactorSoft5X (vec4 shadowPosWithDepthBias, vec3 worldPos) {\n \t vec3 shadowNDCPos;\n \t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n \t\t return 1.0;\n \t }\n return NativePCFShadowFactorSoft5X(shadowNDCPos, cc_spotShadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCSpotShadowFactorBase(out vec4 shadowPosWithDepthBias, vec4 shadowPos, vec3 worldPos, vec2 shadowBias)\n {\n float pcf = cc_shadowWHPBInfo.z;\n vec4 pos = vec4(1.0);\n #if CC_SHADOWMAP_USE_LINEAR_DEPTH\n pos = ApplyShadowDepthBias_PerspectiveLinearDepth(shadowPos, shadowBias.x, worldPos);\n #else\n pos = ApplyShadowDepthBias_Perspective(shadowPos, shadowBias.x);\n #endif\n float realtimeShadow = 1.0;\n if (pcf > 2.9) {\n realtimeShadow = CCGetSpotLightShadowFactorSoft5X(pos, worldPos);\n }else if (pcf > 1.9) {\n realtimeShadow = CCGetSpotLightShadowFactorSoft3X(pos, worldPos);\n }else if (pcf > 0.9) {\n realtimeShadow = CCGetSpotLightShadowFactorSoft(pos, worldPos);\n }else {\n realtimeShadow = CCGetSpotLightShadowFactorHard(pos, worldPos);\n }\n shadowPosWithDepthBias = pos;\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n }\n float CCShadowFactorBase(out vec4 shadowPosWithDepthBias, vec4 shadowPos, vec3 N, vec2 shadowBias)\n {\n vec4 pos = ApplyShadowDepthBias_FaceNormal(shadowPos, N, shadowBias.y, cc_matLightView, cc_shadowProjInfo.xy);\n pos = ApplyShadowDepthBias_Orthographic(pos, shadowBias.x, cc_shadowProjDepthInfo.x, cc_shadowProjDepthInfo.y);\n float realtimeShadow = 1.0;\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n realtimeShadow = CCGetDirLightShadowFactorSoft5X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n realtimeShadow = CCGetDirLightShadowFactorSoft3X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n realtimeShadow = CCGetDirLightShadowFactorSoft(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n realtimeShadow = CCGetDirLightShadowFactorHard(pos);\n #endif\n shadowPosWithDepthBias = pos;\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n }\n #if CC_SUPPORT_CASCADED_SHADOW_MAP\n bool CCGetCSMLevelWithTransition(out highp float ratio, vec3 clipPos) {\n highp float maxRange = 1.0 - cc_csmSplitsInfo.x;\n highp float minRange = cc_csmSplitsInfo.x;\n highp float thresholdInvert = 1.0 / cc_csmSplitsInfo.x;\n ratio = 0.0;\n if (clipPos.x <= minRange) {\n ratio = clipPos.x * thresholdInvert;\n return true;\n }\n if (clipPos.x >= maxRange) {\n ratio = 1.0 - (clipPos.x - maxRange) * thresholdInvert;\n return true;\n }\n if (clipPos.y <= minRange) {\n ratio = clipPos.y * thresholdInvert;\n return true;\n }\n if (clipPos.y >= maxRange) {\n ratio = 1.0 - (clipPos.y - maxRange) * thresholdInvert;\n return true;\n }\n return false;\n }\n bool CCHasCSMLevel(int level, vec3 worldPos) {\n highp float layerThreshold = cc_csmViewDir0[0].w;\n bool hasLevel = false;\n for (int i = 0; i < 4; i++) {\n if (i == level) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0) {\n hasLevel = true;\n }\n }\n }\n return hasLevel;\n }\n void CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos, int level) {\n highp float layerThreshold = cc_csmViewDir0[0].w;\n for (int i = 0; i < 4; i++) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0 && i == level) {\n csmPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n csmPos.xy = csmPos.xy * cc_csmAtlas[i].xy + cc_csmAtlas[i].zw;\n shadowProjDepthInfo = cc_csmProjDepthInfo[i];\n shadowProjInfo = cc_csmProjInfo[i];\n shadowViewDir0 = cc_csmViewDir0[i].xyz;\n shadowViewDir1 = cc_csmViewDir1[i].xyz;\n shadowViewDir2 = cc_csmViewDir2[i].xyz;\n }\n }\n }\n int CCGetCSMLevel(out bool isTransitionArea, out highp float transitionRatio, out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos)\n {\n int level = -1;\n highp float layerThreshold = cc_csmViewDir0[0].w;\n for (int i = 0; i < 4; i++) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0 && level < 0) {\n #if CC_CASCADED_LAYERS_TRANSITION\n isTransitionArea = CCGetCSMLevelWithTransition(transitionRatio, clipPos);\n #endif\n csmPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n csmPos.xy = csmPos.xy * cc_csmAtlas[i].xy + cc_csmAtlas[i].zw;\n shadowProjDepthInfo = cc_csmProjDepthInfo[i];\n shadowProjInfo = cc_csmProjInfo[i];\n shadowViewDir0 = cc_csmViewDir0[i].xyz;\n shadowViewDir1 = cc_csmViewDir1[i].xyz;\n shadowViewDir2 = cc_csmViewDir2[i].xyz;\n level = i;\n }\n }\n return level;\n }\n int CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos)\n {\n bool isTransitionArea = false;\n highp float transitionRatio = 0.0;\n return CCGetCSMLevel(isTransitionArea, transitionRatio, csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n }\n float CCCSMFactorBase(out vec4 csmPos, out vec4 csmPosWithBias, vec3 worldPos, vec3 N, vec2 shadowBias)\n {\n bool isTransitionArea = false;\n highp float ratio = 0.0;\n csmPos = vec4(1.0);\n vec4 shadowProjDepthInfo, shadowProjInfo;\n vec3 shadowViewDir0, shadowViewDir1, shadowViewDir2;\n int level = -1;\n #if CC_CASCADED_LAYERS_TRANSITION\n level = CCGetCSMLevel(isTransitionArea, ratio, csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n #else\n level = CCGetCSMLevel(csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n #endif\n if (level < 0) { return 1.0; }\n vec4 pos = ApplyShadowDepthBias_FaceNormal(csmPos, N, shadowBias.y, shadowViewDir0, shadowViewDir1, shadowViewDir2, shadowProjInfo.xy);\n pos = ApplyShadowDepthBias_Orthographic(pos, shadowBias.x, shadowProjDepthInfo.x, shadowProjDepthInfo.y);\n csmPosWithBias = pos;\n float realtimeShadow = 1.0;\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n realtimeShadow = CCGetDirLightShadowFactorSoft5X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n realtimeShadow = CCGetDirLightShadowFactorSoft3X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n realtimeShadow = CCGetDirLightShadowFactorSoft(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n realtimeShadow = CCGetDirLightShadowFactorHard(pos);\n #endif\n #if CC_CASCADED_LAYERS_TRANSITION\n vec4 nextCSMPos = vec4(1.0);\n vec4 nextShadowProjDepthInfo, nextShadowProjInfo;\n vec3 nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2;\n float nextRealtimeShadow = 1.0;\n CCGetCSMLevel(nextCSMPos, nextShadowProjDepthInfo, nextShadowProjInfo, nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2, worldPos, level + 1);\n bool hasNextLevel = CCHasCSMLevel(level + 1, worldPos);\n if (hasNextLevel && isTransitionArea) {\n vec4 nexPos = ApplyShadowDepthBias_FaceNormal(nextCSMPos, N, shadowBias.y, nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2, nextShadowProjInfo.xy);\n nexPos = ApplyShadowDepthBias_Orthographic(nexPos, shadowBias.x, nextShadowProjDepthInfo.x, nextShadowProjDepthInfo.y);\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft5X(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft3X(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n nextRealtimeShadow = CCGetDirLightShadowFactorHard(nexPos);\n #endif\n return mix(mix(nextRealtimeShadow, realtimeShadow, ratio), 1.0, cc_shadowNFLSInfo.w);\n }\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n #else\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n #endif\n }\n #else\n int CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos) {\n return -1;\n }\n float CCCSMFactorBase(out vec4 csmPos, out vec4 csmPosWithBias, vec3 worldPos, vec3 N, vec2 shadowBias) {\n csmPos = cc_matLightViewProj * vec4(worldPos, 1.0);\n return CCShadowFactorBase(csmPosWithBias, csmPos, N, shadowBias);\n }\n #endif\n float CCShadowFactorBase(vec4 shadowPos, vec3 N, vec2 shadowBias) {\n vec4 shadowPosWithDepthBias;\n return CCShadowFactorBase(shadowPosWithDepthBias, shadowPos, N, shadowBias);\n }\n float CCCSMFactorBase(vec3 worldPos, vec3 N, vec2 shadowBias) {\n vec4 csmPos, csmPosWithBias;\n return CCCSMFactorBase(csmPos, csmPosWithBias, worldPos, N, shadowBias);\n }\n float CCSpotShadowFactorBase(vec4 shadowPos, vec3 worldPos, vec2 shadowBias)\n {\n vec4 shadowPosWithDepthBias;\n return CCSpotShadowFactorBase(shadowPosWithDepthBias, shadowPos, worldPos, shadowBias);\n }\n #endif\n highp float decode32 (highp vec4 rgba) {\n rgba = rgba * 255.0;\n highp float Sign = 1.0 - (step(128.0, (rgba[3]) + 0.5)) * 2.0;\n highp float Exponent = 2.0 * (mod(float(int((rgba[3]) + 0.5)), 128.0)) + (step(128.0, (rgba[2]) + 0.5)) - 127.0;\n highp float Mantissa = (mod(float(int((rgba[2]) + 0.5)), 128.0)) * 65536.0 + rgba[1] * 256.0 + rgba[0] + 8388608.0;\n return Sign * exp2(Exponent - 23.0) * Mantissa;\n }\n vec4 packRGBE (vec3 rgb) {\n highp float maxComp = max(max(rgb.r, rgb.g), rgb.b);\n highp float e = 128.0;\n if (maxComp > 0.0001) {\n e = log(maxComp) / log(1.1);\n e = ceil(e);\n e = clamp(e + 128.0, 0.0, 255.0);\n }\n highp float sc = 1.0 / pow(1.1, e - 128.0);\n vec3 encode = clamp(rgb * sc, vec3(0.0), vec3(1.0)) * 255.0;\n vec3 encode_rounded = floor(encode) + step(encode - floor(encode), vec3(0.5));\n return vec4(encode_rounded, e) / 255.0;\n }\n vec3 unpackRGBE (vec4 rgbe) {\n return rgbe.rgb * pow(1.1, rgbe.a * 255.0 - 128.0);\n }\n vec4 fragTextureLod (sampler2D tex, vec2 coord, float lod) {\n #ifdef GL_EXT_shader_texture_lod\n return texture2DLodEXT(tex, coord, lod);\n #else\n return texture2D(tex, coord, lod);\n #endif\n }\n vec4 fragTextureLod (samplerCube tex, vec3 coord, float lod) {\n #ifdef GL_EXT_shader_texture_lod\n return textureCubeLodEXT(tex, coord, lod);\n #else\n return textureCube(tex, coord, lod);\n #endif\n }\n uniform samplerCube cc_environment;\n vec3 CalculateReflectDirection(vec3 N, vec3 V, float NoV)\n {\n float sideSign = NoV < 0.0 ? -1.0 : 1.0;\n N *= sideSign;\n return reflect(-V, N);\n }\n vec3 CalculatePlanarReflectPositionOnPlane(vec3 N, vec3 V, vec3 worldPos, vec4 plane, vec3 cameraPos, float probeReflectedDepth)\n {\n float distPixelToPlane = -dot(plane, vec4(worldPos, 1.0));\n plane.w += distPixelToPlane;\n float distCameraToPlane = abs(-dot(plane, vec4(cameraPos, 1.0)));\n vec3 planeN = plane.xyz;\n vec3 virtualCameraPos = cameraPos - 2.0 * distCameraToPlane * planeN;\n vec3 bumpedR = normalize(reflect(-V, N));\n vec3 reflectedPointPos = worldPos + probeReflectedDepth * bumpedR;\n vec3 virtualCameraToReflectedPoint = normalize(reflectedPointPos - virtualCameraPos);\n float y = distCameraToPlane / max(EPSILON_LOWP, dot(planeN, virtualCameraToReflectedPoint));\n return virtualCameraPos + y * virtualCameraToReflectedPoint;\n }\n vec4 CalculateBoxProjectedDirection(vec3 R, vec3 worldPos, vec3 cubeCenterPos, vec3 cubeBoxHalfSize)\n {\n vec3 W = worldPos - cubeCenterPos;\n vec3 projectedLength = (sign(R) * cubeBoxHalfSize - W) / (R + vec3(EPSILON));\n float len = min(min(projectedLength.x, projectedLength.y), projectedLength.z);\n vec3 P = W + len * R;\n float weight = len < 0.0 ? 0.0 : 1.0;\n return vec4(P, weight);\n }\n #if CC_USE_IBL\n #if CC_USE_DIFFUSEMAP\n uniform samplerCube cc_diffuseMap;\n #endif\n #endif\n #if CC_USE_REFLECTION_PROBE\n uniform samplerCube cc_reflectionProbeCubemap;\n uniform sampler2D cc_reflectionProbePlanarMap;\n uniform sampler2D cc_reflectionProbeDataMap;\n uniform samplerCube cc_reflectionProbeBlendCubemap;\n uniform highp vec4 cc_reflectionProbeData1;\n uniform highp vec4 cc_reflectionProbeData2;\n uniform highp vec4 cc_reflectionProbeBlendData1;\n uniform highp vec4 cc_reflectionProbeBlendData2;\n vec4 GetTexData(sampler2D dataMap, float dataMapWidth, float x, float uv_y)\n {\n return vec4(\n decode32(texture2D(dataMap, vec2(((x + 0.5)/dataMapWidth), uv_y))),\n decode32(texture2D(dataMap, vec2(((x + 1.5)/dataMapWidth), uv_y))),\n decode32(texture2D(dataMap, vec2(((x + 2.5)/dataMapWidth), uv_y))),\n decode32(texture2D(dataMap, vec2(((x + 3.5)/dataMapWidth), uv_y)))\n );\n }\n void GetPlanarReflectionProbeData(out vec4 plane, out float planarReflectionDepthScale, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n plane.xyz = texData1.xyz;\n plane.w = texData2.x;\n planarReflectionDepthScale = texData2.y;\n mipCount = texData2.z;\n #else\n plane = cc_reflectionProbeData1;\n planarReflectionDepthScale = cc_reflectionProbeData2.x;\n mipCount = cc_reflectionProbeData2.w;\n #endif\n }\n void GetCubeReflectionProbeData(out vec3 centerPos, out vec3 boxHalfSize, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n centerPos = texData1.xyz;\n boxHalfSize = texData2.xyz;\n mipCount = texData3.x;\n #else\n centerPos = cc_reflectionProbeData1.xyz;\n boxHalfSize = cc_reflectionProbeData2.xyz;\n mipCount = cc_reflectionProbeData2.w;\n #endif\n if (mipCount > 1000.0) mipCount -= 1000.0;\n }\n bool isReflectProbeUsingRGBE(float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n return texData3.x > 1000.0;\n #else\n return cc_reflectionProbeData2.w > 1000.0;\n #endif\n }\n bool isBlendReflectProbeUsingRGBE(float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n return texData3.x > 1000.0;\n #else\n return cc_reflectionProbeBlendData2.w > 1000.0;\n #endif\n }\n void GetBlendCubeReflectionProbeData(out vec3 centerPos, out vec3 boxHalfSize, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n centerPos = texData1.xyz;\n boxHalfSize = texData2.xyz;\n mipCount = texData3.x;\n #else\n centerPos = cc_reflectionProbeBlendData1.xyz;\n boxHalfSize = cc_reflectionProbeBlendData2.xyz;\n mipCount = cc_reflectionProbeBlendData2.w;\n #endif\n if (mipCount > 1000.0) mipCount -= 1000.0;\n }\n #endif\n #if CC_USE_LIGHT_PROBE\n #if CC_USE_LIGHT_PROBE\n #if USE_INSTANCING\n varying mediump vec4 v_sh_linear_const_r;\n varying mediump vec4 v_sh_linear_const_g;\n varying mediump vec4 v_sh_linear_const_b;\n #else\n uniform vec4 cc_sh_linear_const_r;\n uniform vec4 cc_sh_linear_const_g;\n uniform vec4 cc_sh_linear_const_b;\n uniform vec4 cc_sh_quadratic_r;\n uniform vec4 cc_sh_quadratic_g;\n uniform vec4 cc_sh_quadratic_b;\n uniform vec4 cc_sh_quadratic_a;\n #endif\n #if CC_USE_LIGHT_PROBE\n vec3 SHEvaluate(vec3 normal)\n {\n vec3 result;\n #if USE_INSTANCING\n vec4 normal4 = vec4(normal, 1.0);\n result.r = dot(v_sh_linear_const_r, normal4);\n result.g = dot(v_sh_linear_const_g, normal4);\n result.b = dot(v_sh_linear_const_b, normal4);\n #else\n vec4 normal4 = vec4(normal, 1.0);\n result.r = dot(cc_sh_linear_const_r, normal4);\n result.g = dot(cc_sh_linear_const_g, normal4);\n result.b = dot(cc_sh_linear_const_b, normal4);\n vec4 n14 = normal.xyzz * normal.yzzx;\n float n5 = normal.x * normal.x - normal.y * normal.y;\n result.r += dot(cc_sh_quadratic_r, n14);\n result.g += dot(cc_sh_quadratic_g, n14);\n result.b += dot(cc_sh_quadratic_b, n14);\n result += (cc_sh_quadratic_a.rgb * n5);\n #endif\n #if CC_USE_HDR\n result *= cc_exposure.w * cc_exposure.x;\n #endif\n return result;\n }\n #endif\n #endif\n #endif\n float GGXMobile (float roughness, float NoH, vec3 H, vec3 N) {\n vec3 NxH = cross(N, H);\n float OneMinusNoHSqr = dot(NxH, NxH);\n float a = roughness * roughness;\n float n = NoH * a;\n float p = a / max(EPSILON, OneMinusNoHSqr + n * n);\n return p * p;\n }\n float CalcSpecular (float roughness, float NoH, vec3 H, vec3 N) {\n return (roughness * 0.25 + 0.25) * GGXMobile(roughness, NoH, H, N);\n }\n vec3 BRDFApprox (vec3 specular, float roughness, float NoV) {\n const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);\n const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);\n vec4 r = roughness * c0 + c1;\n float a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y;\n vec2 AB = vec2(-1.04, 1.04) * a004 + r.zw;\n AB.y *= clamp(50.0 * specular.g, 0.0, 1.0);\n return max(vec3(0.0), specular * AB.x + AB.y);\n }\n #if USE_REFLECTION_DENOISE\n vec3 GetEnvReflectionWithMipFiltering(vec3 R, float roughness, float mipCount, float denoiseIntensity, vec2 screenUV) {\n #if CC_USE_IBL\n \tfloat mip = roughness * (mipCount - 1.0);\n \tfloat delta = (dot(dFdx(R), dFdy(R))) * 1000.0;\n \tfloat mipBias = mix(0.0, 5.0, clamp(delta, 0.0, 1.0));\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_CUBE\n vec4 biased = fragTextureLod(cc_reflectionProbeCubemap, R, mip + mipBias);\n \t vec4 filtered = textureCube(cc_reflectionProbeCubemap, R);\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_PLANAR\n vec4 biased = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, mip + mipBias);\n vec4 filtered = texture2D(cc_reflectionProbePlanarMap, screenUV);\n #else\n vec4 biased = fragTextureLod(cc_environment, R, mip + mipBias);\n \t vec4 filtered = textureCube(cc_environment, R);\n #endif\n #if CC_USE_IBL == 2 || CC_USE_REFLECTION_PROBE != REFLECTION_PROBE_TYPE_NONE\n biased.rgb = unpackRGBE(biased);\n \tfiltered.rgb = unpackRGBE(filtered);\n #else\n \tbiased.rgb = SRGBToLinear(biased.rgb);\n \tfiltered.rgb = SRGBToLinear(filtered.rgb);\n #endif\n return mix(biased.rgb, filtered.rgb, denoiseIntensity);\n #else\n return vec3(0.0, 0.0, 0.0);\n #endif\n }\n #endif\n struct StandardSurface {\n vec4 albedo;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n vec3 position, position_fract_part;\n #else\n vec3 position;\n #endif\n vec3 normal;\n vec3 emissive;\n vec4 lightmap;\n float lightmap_test;\n float roughness;\n float metallic;\n float occlusion;\n float specularIntensity;\n #if CC_RECEIVE_SHADOW\n vec2 shadowBias;\n #endif\n #if CC_RECEIVE_SHADOW || CC_USE_REFLECTION_PROBE\n float reflectionProbeId;\n #endif\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND || CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n float reflectionProbeBlendId;\n float reflectionProbeBlendFactor;\n #endif\n };\n vec3 SampleReflectionProbe(samplerCube tex, vec3 R, float roughness, float mipCount, bool isRGBE) {\n vec4 envmap = fragTextureLod(tex, R, roughness * (mipCount - 1.0));\n if (isRGBE)\n return unpackRGBE(envmap);\n else\n return SRGBToLinear(envmap.rgb);\n }\n vec4 CCStandardShadingBase (StandardSurface s, vec4 shadowPos) {\n vec3 diffuse = s.albedo.rgb * (1.0 - s.metallic);\n vec3 specular = mix(vec3(0.08 * s.specularIntensity), s.albedo.rgb, s.metallic);\n vec3 position;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n position = unpackHighpData(s.position, s.position_fract_part);\n #else\n position = s.position;\n #endif\n vec3 N = normalize(s.normal);\n vec3 V = normalize(cc_cameraPos.xyz - position);\n vec3 L = normalize(-cc_mainLitDir.xyz);\n float NL = max(dot(N, L), 0.0);\n float shadow = 1.0;\n #if CC_RECEIVE_SHADOW && CC_SHADOW_TYPE == 2\n if (NL > 0.0 && cc_mainLitDir.w > 0.0) {\n #if CC_DIR_LIGHT_SHADOW_TYPE == 2\n shadow = CCCSMFactorBase(position, N, s.shadowBias);\n #endif\n #if CC_DIR_LIGHT_SHADOW_TYPE == 1\n shadow = CCShadowFactorBase(shadowPos, N, s.shadowBias);\n #endif\n }\n #endif\n vec3 finalColor = vec3(0.0);\n #if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n vec3 lightmap = s.lightmap.rgb;\n #if CC_USE_HDR\n lightmap.rgb *= cc_exposure.w * cc_exposure.x;\n #endif\n #if CC_USE_LIGHTMAP == LIGHT_MAP_TYPE_INDIRECT_OCCLUSION\n shadow *= s.lightmap.a;\n finalColor += diffuse * lightmap.rgb;\n #else\n finalColor += diffuse * lightmap.rgb * shadow;\n #endif\n s.occlusion *= s.lightmap_test;\n #endif\n #if !CC_DISABLE_DIRECTIONAL_LIGHT\n float NV = max(abs(dot(N, V)), 0.0);\n specular = BRDFApprox(specular, s.roughness, NV);\n vec3 H = normalize(L + V);\n float NH = max(dot(N, H), 0.0);\n vec3 lightingColor = NL * cc_mainLitColor.rgb * cc_mainLitColor.w;\n vec3 diffuseContrib = diffuse / PI;\n vec3 specularContrib = specular * CalcSpecular(s.roughness, NH, H, N);\n vec3 dirlightContrib = (diffuseContrib + specularContrib);\n dirlightContrib *= shadow;\n finalColor += lightingColor * dirlightContrib;\n #endif\n float fAmb = max(EPSILON, 0.5 - N.y * 0.5);\n vec3 ambDiff = mix(cc_ambientSky.rgb, cc_ambientGround.rgb, fAmb);\n vec3 env = vec3(0.0), rotationDir;\n #if CC_USE_IBL\n #if CC_USE_DIFFUSEMAP && !CC_USE_LIGHT_PROBE\n rotationDir = RotationVecFromAxisY(N.xyz, cc_surfaceTransform.z, cc_surfaceTransform.w);\n vec4 diffuseMap = textureCube(cc_diffuseMap, rotationDir);\n #if CC_USE_DIFFUSEMAP == 2\n ambDiff = unpackRGBE(diffuseMap);\n #else\n ambDiff = SRGBToLinear(diffuseMap.rgb);\n #endif\n #endif\n #if !CC_USE_REFLECTION_PROBE\n vec3 R = normalize(reflect(-V, N));\n rotationDir = RotationVecFromAxisY(R.xyz, cc_surfaceTransform.z, cc_surfaceTransform.w);\n #if USE_REFLECTION_DENOISE && !CC_IBL_CONVOLUTED\n env = GetEnvReflectionWithMipFiltering(rotationDir, s.roughness, cc_ambientGround.w, 0.6, vec2(0.0));\n #else\n vec4 envmap = fragTextureLod(cc_environment, rotationDir, s.roughness * (cc_ambientGround.w - 1.0));\n #if CC_USE_IBL == 2\n env = unpackRGBE(envmap);\n #else\n env = SRGBToLinear(envmap.rgb);\n #endif\n #endif\n #endif\n #endif\n float lightIntensity = cc_ambientSky.w;\n #if CC_USE_REFLECTION_PROBE\n vec4 probe = vec4(0.0);\n vec3 R = normalize(reflect(-V, N));\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_CUBE\n if(s.reflectionProbeId < 0.0){\n env = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2);\n }else{\n vec3 centerPos, boxHalfSize;\n float mipCount;\n GetCubeReflectionProbeData(centerPos, boxHalfSize, mipCount, s.reflectionProbeId);\n vec4 fixedR = CalculateBoxProjectedDirection(R, position, centerPos, boxHalfSize);\n env = mix(SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2) * lightIntensity,\n SampleReflectionProbe(cc_reflectionProbeCubemap, fixedR.xyz, s.roughness, mipCount, isReflectProbeUsingRGBE(s.reflectionProbeId)), fixedR.w);\n }\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_PLANAR\n if(s.reflectionProbeId < 0.0){\n vec2 screenUV = GetPlanarReflectScreenUV(s.position, cc_matViewProj, cc_cameraPos.w, V, R);\n probe = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, 1.0);\n }else{\n vec4 plane;\n float planarReflectionDepthScale, mipCount;\n GetPlanarReflectionProbeData(plane, planarReflectionDepthScale, mipCount, s.reflectionProbeId);\n R = normalize(CalculateReflectDirection(N, V, max(abs(dot(N, V)), 0.0)));\n vec3 worldPosOffset = CalculatePlanarReflectPositionOnPlane(N, V, s.position, plane, cc_cameraPos.xyz, planarReflectionDepthScale);\n vec2 screenUV = GetPlanarReflectScreenUV(worldPosOffset, cc_matViewProj, cc_cameraPos.w, V, R);\n probe = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, mipCount);\n }\n env = unpackRGBE(probe);\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND || CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n if (s.reflectionProbeId < 0.0) {\n env = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2);\n } else {\n vec3 centerPos, boxHalfSize;\n float mipCount;\n GetCubeReflectionProbeData(centerPos, boxHalfSize, mipCount, s.reflectionProbeId);\n vec4 fixedR = CalculateBoxProjectedDirection(R, s.position, centerPos, boxHalfSize);\n env = SampleReflectionProbe(cc_reflectionProbeCubemap, fixedR.xyz, s.roughness, mipCount, isReflectProbeUsingRGBE(s.reflectionProbeId));\n if (s.reflectionProbeBlendId < 0.0) {\n vec3 skyBoxEnv = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2) * lightIntensity;\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n env = mix(env, skyBoxEnv, s.reflectionProbeBlendFactor);\n #else\n env = mix(skyBoxEnv, env, fixedR.w);\n #endif\n } else {\n vec3 centerPosBlend, boxHalfSizeBlend;\n float mipCountBlend;\n GetBlendCubeReflectionProbeData(centerPosBlend, boxHalfSizeBlend, mipCountBlend, s.reflectionProbeBlendId);\n vec4 fixedRBlend = CalculateBoxProjectedDirection(R, s.position, centerPosBlend, boxHalfSizeBlend);\n vec3 probe1 = SampleReflectionProbe(cc_reflectionProbeBlendCubemap, fixedRBlend.xyz, s.roughness, mipCountBlend, isBlendReflectProbeUsingRGBE(s.reflectionProbeBlendId));\n env = mix(env, probe1, s.reflectionProbeBlendFactor);\n }\n }\n #endif\n #endif\n #if CC_USE_REFLECTION_PROBE\n lightIntensity = s.reflectionProbeId < 0.0 ? lightIntensity : 1.0;\n #endif\n finalColor += env * lightIntensity * specular * s.occlusion;\n #if CC_USE_LIGHT_PROBE\n finalColor += SHEvaluate(N) * diffuse * s.occlusion;\n #endif\n finalColor += ambDiff.rgb * cc_ambientSky.w * diffuse * s.occlusion;\n finalColor += s.emissive;\n return vec4(finalColor, s.albedo.a);\n }\n #if CC_PIPELINE_TYPE == 0\n #define LIGHTS_PER_PASS 1\n #else\n #define LIGHTS_PER_PASS 10\n #endif\n #if CC_ENABLE_CLUSTERED_LIGHT_CULLING == 0\n uniform highp vec4 cc_lightPos[LIGHTS_PER_PASS];\n uniform vec4 cc_lightColor[LIGHTS_PER_PASS];\n uniform vec4 cc_lightSizeRangeAngle[LIGHTS_PER_PASS];\n uniform vec4 cc_lightDir[LIGHTS_PER_PASS];\n uniform vec4 cc_lightBoundingSizeVS[LIGHTS_PER_PASS];\n #endif\n float SmoothDistAtt (float distSqr, float invSqrAttRadius) {\n float factor = distSqr * invSqrAttRadius;\n float smoothFactor = clamp(1.0 - factor * factor, 0.0, 1.0);\n return smoothFactor * smoothFactor;\n }\n float GetDistAtt (float distSqr, float invSqrAttRadius) {\n float attenuation = 1.0 / max(distSqr, 0.01*0.01);\n attenuation *= SmoothDistAtt(distSqr , invSqrAttRadius);\n return attenuation;\n }\n float GetAngleAtt (vec3 L, vec3 litDir, float litAngleScale, float litAngleOffset) {\n float cd = dot(litDir, L);\n float attenuation = clamp(cd * litAngleScale + litAngleOffset, 0.0, 1.0);\n return (attenuation * attenuation);\n }\n float GetOutOfRange (vec3 worldPos, vec3 lightPos, vec3 lookAt, vec3 right, vec3 BoundingHalfSizeVS) {\n vec3 v = vec3(0.0);\n vec3 up = cross(right, lookAt);\n worldPos -= lightPos;\n v.x = dot(worldPos, right);\n v.y = dot(worldPos, up);\n v.z = dot(worldPos, lookAt);\n vec3 result = step(abs(v), BoundingHalfSizeVS);\n return result.x * result.y * result.z;\n }\n #if CC_ENABLE_CLUSTERED_LIGHT_CULLING == 0\n vec4 CCStandardShadingAdditive (StandardSurface s, vec4 shadowPos) {\n vec3 position;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n position = unpackHighpData(s.position, s.position_fract_part);\n #else\n position = s.position;\n #endif\n vec3 diffuse = s.albedo.rgb * (1.0 - s.metallic);\n vec3 specular = mix(vec3(0.04), s.albedo.rgb, s.metallic);\n vec3 diffuseContrib = diffuse / PI;\n vec3 N = normalize(s.normal);\n vec3 V = normalize(cc_cameraPos.xyz - position);\n float NV = max(abs(dot(N, V)), 0.0);\n specular = BRDFApprox(specular, s.roughness, NV);\n vec3 finalColor = vec3(0.0);\n int numLights = CC_PIPELINE_TYPE == 0 ? LIGHTS_PER_PASS : int(cc_lightDir[0].w);\n for (int i = 0; i < LIGHTS_PER_PASS; i++) {\n if (i >= numLights) break;\n vec3 SLU = IS_RANGED_DIRECTIONAL_LIGHT(cc_lightPos[i].w) ? -cc_lightDir[i].xyz : cc_lightPos[i].xyz - position;\n vec3 SL = normalize(SLU);\n vec3 SH = normalize(SL + V);\n float SNL = max(dot(N, SL), 0.0);\n float SNH = max(dot(N, SH), 0.0);\n vec3 lspec = specular * CalcSpecular(s.roughness, SNH, SH, N);\n float illum = 1.0;\n float att = 1.0;\n if (IS_RANGED_DIRECTIONAL_LIGHT(cc_lightPos[i].w)) {\n att = GetOutOfRange(position, cc_lightPos[i].xyz, cc_lightDir[i].xyz, cc_lightSizeRangeAngle[i].xyz, cc_lightBoundingSizeVS[i].xyz);\n } else {\n float distSqr = dot(SLU, SLU);\n float litRadius = cc_lightSizeRangeAngle[i].x;\n float litRadiusSqr = litRadius * litRadius;\n illum = (IS_POINT_LIGHT(cc_lightPos[i].w) || IS_RANGED_DIRECTIONAL_LIGHT(cc_lightPos[i].w)) ? 1.0 : litRadiusSqr / max(litRadiusSqr, distSqr);\n float attRadiusSqrInv = 1.0 / max(cc_lightSizeRangeAngle[i].y, 0.01);\n attRadiusSqrInv *= attRadiusSqrInv;\n att = GetDistAtt(distSqr, attRadiusSqrInv);\n if (IS_SPOT_LIGHT(cc_lightPos[i].w)) {\n float cosInner = max(dot(-cc_lightDir[i].xyz, SL), 0.01);\n float cosOuter = cc_lightSizeRangeAngle[i].z;\n float litAngleScale = 1.0 / max(0.001, cosInner - cosOuter);\n float litAngleOffset = -cosOuter * litAngleScale;\n att *= GetAngleAtt(SL, -cc_lightDir[i].xyz, litAngleScale, litAngleOffset);\n }\n }\n float shadow = 1.0;\n #if CC_RECEIVE_SHADOW && CC_SHADOW_TYPE == 2\n if (IS_SPOT_LIGHT(cc_lightPos[i].w) && cc_lightSizeRangeAngle[i].w > 0.0) {\n shadow = CCSpotShadowFactorBase(shadowPos, position, s.shadowBias);\n }\n #endif\n finalColor += SNL * cc_lightColor[i].rgb * shadow * cc_lightColor[i].w * illum * att * (diffuseContrib + lspec);\n }\n return vec4(finalColor, 0.0);\n }\n #endif\n#if CC_ENABLE_CLUSTERED_LIGHT_CULLING == 1\n readonly buffer b_ccLightsBuffer { vec4 b_ccLights[]; };\n readonly buffer b_clusterLightIndicesBuffer { uint b_clusterLightIndices[]; };\n readonly buffer b_clusterLightGridBuffer { uvec4 b_clusterLightGrid[]; };\n struct CCLight\n {\n vec4 cc_lightPos;\n vec4 cc_lightColor;\n vec4 cc_lightSizeRangeAngle;\n vec4 cc_lightDir;\n vec4 cc_lightBoundingSizeVS;\n };\n struct Cluster\n {\n vec3 minBounds;\n vec3 maxBounds;\n };\n struct LightGrid\n {\n uint offset;\n uint ccLights;\n };\n CCLight getCCLight(uint i)\n {\n CCLight light;\n light.cc_lightPos = b_ccLights[5u * i + 0u];\n light.cc_lightColor = b_ccLights[5u * i + 1u];\n light.cc_lightSizeRangeAngle = b_ccLights[5u * i + 2u];\n light.cc_lightDir = b_ccLights[5u * i + 3u];\n light.cc_lightBoundingSizeVS = b_ccLights[5u * i + 4u];\n return light;\n }\n LightGrid getLightGrid(uint cluster)\n {\n uvec4 gridvec = b_clusterLightGrid[cluster];\n LightGrid grid;\n grid.offset = gridvec.x;\n grid.ccLights = gridvec.y;\n return grid;\n }\n uint getGridLightIndex(uint start, uint offset)\n {\n return b_clusterLightIndices[start + offset];\n }\n uint getClusterZIndex(vec4 worldPos)\n {\n float scale = float(24u) / log(cc_nearFar.y / cc_nearFar.x);\n float bias = -(float(24u) * log(cc_nearFar.x) / log(cc_nearFar.y / cc_nearFar.x));\n float eyeDepth = -(cc_matView * worldPos).z;\n uint zIndex = uint(max(log(eyeDepth) * scale + bias, 0.0));\n return zIndex;\n }\n uint getClusterIndex(vec4 fragCoord, vec4 worldPos)\n {\n uint zIndex = getClusterZIndex(worldPos);\n float clusterSizeX = ceil(cc_viewPort.z / float(16u));\n float clusterSizeY = ceil(cc_viewPort.w / float(8u));\n uvec3 indices = uvec3(uvec2(fragCoord.xy / vec2(clusterSizeX, clusterSizeY)), zIndex);\n uint cluster = (16u * 8u) * indices.z + 16u * indices.y + indices.x;\n return cluster;\n }\n vec4 CCClusterShadingAdditive (StandardSurface s, vec4 shadowPos) {\n vec3 diffuse = s.albedo.rgb * (1.0 - s.metallic);\n vec3 specular = mix(vec3(0.04), s.albedo.rgb, s.metallic);\n vec3 diffuseContrib = diffuse / PI;\n vec3 position;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n position = unpackHighpData(s.position, s.position_fract_part);\n #else\n position = s.position;\n #endif\n vec3 N = normalize(s.normal);\n vec3 V = normalize(cc_cameraPos.xyz - position);\n float NV = max(abs(dot(N, V)), 0.001);\n specular = BRDFApprox(specular, s.roughness, NV);\n vec3 finalColor = vec3(0.0);\n uint cluster = getClusterIndex(gl_FragCoord, vec4(position, 1.0));\n LightGrid grid = getLightGrid(cluster);\n uint numLights = grid.ccLights;\n for (uint i = 0u; i < 200u; i++) {\n if (i >= numLights) break;\n uint lightIndex = getGridLightIndex(grid.offset, i);\n CCLight light = getCCLight(lightIndex);\n vec3 SLU = light.cc_lightPos.xyz - position;\n vec3 SL = normalize(SLU);\n vec3 SH = normalize(SL + V);\n float SNL = max(dot(N, SL), 0.001);\n float SNH = max(dot(N, SH), 0.0);\n float distSqr = dot(SLU, SLU);\n float litRadius = light.cc_lightSizeRangeAngle.x;\n float litRadiusSqr = litRadius * litRadius;\n float illum = PI * (litRadiusSqr / max(litRadiusSqr , distSqr));\n float attRadiusSqrInv = 1.0 / max(light.cc_lightSizeRangeAngle.y, 0.01);\n attRadiusSqrInv *= attRadiusSqrInv;\n float att = GetDistAtt(distSqr, attRadiusSqrInv);\n vec3 lspec = specular * CalcSpecular(s.roughness, SNH, SH, N);\n if (IS_SPOT_LIGHT(light.cc_lightPos.w)) {\n float cosInner = max(dot(-light.cc_lightDir.xyz, SL), 0.01);\n float cosOuter = light.cc_lightSizeRangeAngle.z;\n float litAngleScale = 1.0 / max(0.001, cosInner - cosOuter);\n float litAngleOffset = -cosOuter * litAngleScale;\n att *= GetAngleAtt(SL, -light.cc_lightDir.xyz, litAngleScale, litAngleOffset);\n }\n vec3 lightColor = light.cc_lightColor.rgb;\n float shadow = 1.0;\n #if CC_RECEIVE_SHADOW && CC_SHADOW_TYPE == 2\n if (IS_SPOT_LIGHT(light.cc_lightPos.w) && light.cc_lightSizeRangeAngle.w > 0.0) {\n shadow = CCSpotShadowFactorBase(shadowPos, position, s.shadowBias);\n }\n #endif\n lightColor *= shadow;\n finalColor += SNL * lightColor * light.cc_lightColor.w * illum * att * (diffuseContrib + lspec);\n }\n return vec4(finalColor, 0.0);\n }\n#endif\n vec3 ACESToneMap (vec3 color) {\n color = min(color, vec3(8.0));\n const float A = 2.51;\n const float B = 0.03;\n const float C = 2.43;\n const float D = 0.59;\n const float E = 0.14;\n return (color * (A * color + B)) / (color * (C * color + D) + E);\n }\n vec4 CCFragOutput (vec4 color) {\n #if CC_USE_RGBE_OUTPUT\n color = packRGBE(color.rgb);\n #elif !CC_USE_FLOAT_OUTPUT\n #if CC_USE_HDR && CC_TONE_MAPPING_TYPE == HDR_TONE_MAPPING_ACES\n color.rgb = ACESToneMap(color.rgb);\n #endif\n color.rgb = LinearToSRGB(color.rgb);\n #endif\n return color;\n }\n #if CC_USE_FOG != 4\n float LinearFog(vec4 pos, vec3 cameraPos, float fogStart, float fogEnd) {\n vec4 wPos = pos;\n float cam_dis = distance(cameraPos, wPos.xyz);\n return clamp((fogEnd - cam_dis) / (fogEnd - fogStart), 0., 1.);\n }\n float ExpFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * fogDensity);\n return f;\n }\n float ExpSquaredFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * cam_dis * fogDensity * fogDensity);\n return f;\n }\n float LayeredFog(vec4 pos, vec3 cameraPos, float fogTop, float fogRange, float fogAtten) {\n vec4 wPos = pos;\n vec3 camWorldProj = cameraPos.xyz;\n camWorldProj.y = 0.;\n vec3 worldPosProj = wPos.xyz;\n worldPosProj.y = 0.;\n float fDeltaD = distance(worldPosProj, camWorldProj) / fogAtten * 2.0;\n float fDeltaY, fDensityIntegral;\n if (cameraPos.y > fogTop) {\n if (wPos.y < fogTop) {\n fDeltaY = (fogTop - wPos.y) / fogRange * 2.0;\n fDensityIntegral = fDeltaY * fDeltaY * 0.5;\n }\n else {\n fDeltaY = 0.;\n fDensityIntegral = 0.;\n }\n }\n else {\n if (wPos.y < fogTop) {\n float fDeltaA = (fogTop - cameraPos.y) / fogRange * 2.;\n float fDeltaB = (fogTop - wPos.y) / fogRange * 2.;\n fDeltaY = abs(fDeltaA - fDeltaB);\n fDensityIntegral = abs((fDeltaA * fDeltaA * 0.5) - (fDeltaB * fDeltaB * 0.5));\n }\n else {\n fDeltaY = abs(fogTop - cameraPos.y) / fogRange * 2.;\n fDensityIntegral = abs(fDeltaY * fDeltaY * 0.5);\n }\n }\n float fDensity;\n if (fDeltaY != 0.) {\n fDensity = (sqrt(1.0 + ((fDeltaD / fDeltaY) * (fDeltaD / fDeltaY)))) * fDensityIntegral;\n }\n else {\n fDensity = 0.;\n }\n float f = exp(-fDensity);\n return f;\n }\n #endif\n void CC_TRANSFER_FOG_BASE(vec4 pos, out float factor)\n {\n #if CC_USE_FOG == 0\n \tfactor = LinearFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.y);\n #elif CC_USE_FOG == 1\n \tfactor = ExpFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n #elif CC_USE_FOG == 2\n \tfactor = ExpSquaredFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n #elif CC_USE_FOG == 3\n \tfactor = LayeredFog(pos, cc_cameraPos.xyz, cc_fogAdd.x, cc_fogAdd.y, cc_fogAdd.z);\n #else\n \tfactor = 1.0;\n #endif\n }\n void CC_APPLY_FOG_BASE(inout vec4 color, float factor) {\n \tcolor = vec4(mix(cc_fogColor.rgb, color.rgb, factor), color.a);\n }\n vec2 signNotZero(vec2 v) {\n return vec2((v.x >= 0.0) ? +1.0 : -1.0, (v.y >= 0.0) ? +1.0 : -1.0);\n }\n vec3 oct_to_float32x3(vec2 e) {\n vec3 v = vec3(e.xy, 1.0 - abs(e.x) - abs(e.y));\n if (v.z < 0.0) v.xy = (1.0 - abs(v.yx)) * signNotZero(v.xy);\n return normalize(v);\n }\n varying vec2 v_uv;\n uniform sampler2D albedoMap;\n uniform sampler2D normalMap;\n uniform sampler2D emissiveMap;\n uniform sampler2D depthStencil;\n vec4 screen2WS(vec3 coord) {\n vec3 ndc = vec3(\n 2.0 * (coord.x - cc_viewPort.x) / cc_viewPort.z - 1.0,\n 2.0 * (coord.y - cc_viewPort.y) / cc_viewPort.w - 1.0,\n 2.0 * coord.z - 1.0);\n CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(ndc.y);\n return GetWorldPosFromNDCPosRH(ndc, cc_matProj, cc_matViewProjInv);\n }\n void main () {\n StandardSurface s;\n vec4 albedo = texture2D(albedoMap, v_uv);\n vec4 normal = texture2D(normalMap, v_uv);\n vec4 emissive = texture2D(emissiveMap, v_uv);\n float depth = texture2D(depthStencil, v_uv).x;\n s.albedo = albedo;\n vec3 position = screen2WS(vec3(gl_FragCoord.xy, depth)).xyz;\n s.position = position;\n s.roughness = normal.z;\n s.normal = oct_to_float32x3(normal.xy);\n s.specularIntensity = 0.5;\n s.metallic = normal.w;\n s.emissive = emissive.xyz;\n s.occlusion = emissive.w;\n#if CC_RECEIVE_SHADOW\n s.shadowBias = vec2(0, 0);\n#endif\n float fogFactor;\n CC_TRANSFER_FOG_BASE(vec4(position, 1), fogFactor);\n vec4 shadowPos;\n shadowPos = cc_matLightViewProj * vec4(position, 1);\n vec4 color = CCStandardShadingBase(s, shadowPos) +\n#if CC_ENABLE_CLUSTERED_LIGHT_CULLING == 1\n CCClusterShadingAdditive(s, shadowPos);\n#else\n CCStandardShadingAdditive(s, shadowPos);\n#endif\n CC_APPLY_FOG_BASE(color, fogFactor);\n color = CCFragOutput(color);\n#if CC_USE_DEBUG_VIEW == CC_SURFACES_DEBUG_VIEW_SINGLE\n color = vec4(albedoMap.rgb, 1.0);\n#endif\n gl_FragColor = color;\n }"
- },
- "builtins": {
- "globals": {
- "blocks": [
- {
- "name": "CCGlobal",
- "defines": []
- },
- {
- "name": "CCCamera",
- "defines": []
- },
- {
- "name": "CCShadow",
- "defines": []
- },
- {
- "name": "CCCSM",
- "defines": [
- "CC_SUPPORT_CASCADED_SHADOW_MAP"
- ]
- }
- ],
- "samplerTextures": [
- {
- "name": "cc_shadowMap",
- "defines": [
- "CC_RECEIVE_SHADOW"
- ]
- },
- {
- "name": "cc_spotShadowMap",
- "defines": [
- "CC_RECEIVE_SHADOW"
- ]
- },
- {
- "name": "cc_environment",
- "defines": []
- },
- {
- "name": "cc_diffuseMap",
- "defines": [
- "CC_USE_IBL",
- "CC_USE_DIFFUSEMAP"
- ]
- }
- ],
- "buffers": [],
- "images": []
- },
- "locals": {
- "blocks": [
- {
- "name": "CCLocal",
- "defines": [
- "CC_USE_REFLECTION_PROBE"
- ]
- },
- {
- "name": "CCSH",
- "defines": [
- "CC_USE_LIGHT_PROBE",
- "!USE_INSTANCING"
- ]
- },
- {
- "name": "CCForwardLight",
- "defines": [
- "CC_ENABLE_CLUSTERED_LIGHT_CULLING"
- ]
- }
- ],
- "samplerTextures": [
- {
- "name": "cc_reflectionProbeCubemap",
- "defines": [
- "CC_USE_REFLECTION_PROBE"
- ]
- },
- {
- "name": "cc_reflectionProbePlanarMap",
- "defines": [
- "CC_USE_REFLECTION_PROBE"
- ]
- },
- {
- "name": "cc_reflectionProbeDataMap",
- "defines": [
- "CC_USE_REFLECTION_PROBE"
- ]
- },
- {
- "name": "cc_reflectionProbeBlendCubemap",
- "defines": [
- "CC_USE_REFLECTION_PROBE"
- ]
- }
- ],
- "buffers": [],
- "images": []
- },
- "statistics": {
- "CC_EFFECT_USED_VERTEX_UNIFORM_VECTORS": 42,
- "CC_EFFECT_USED_FRAGMENT_UNIFORM_VECTORS": 120
- }
- },
- "defines": [
- {
- "name": "USE_INSTANCING",
- "type": "boolean",
- "defines": [],
- "editor": {
- "elevated": true
- }
- },
- {
- "name": "CC_USE_SKINNING",
- "type": "boolean",
- "defines": []
- },
- {
- "name": "CC_USE_BAKED_ANIMATION",
- "type": "boolean",
- "defines": [
- "USE_INSTANCING"
- ]
- },
- {
- "name": "CC_USE_LIGHTMAP",
- "type": "number",
- "defines": [],
- "range": [
- 0,
- 3
- ]
- },
- {
- "name": "CC_USE_REFLECTION_PROBE",
- "type": "number",
- "defines": [],
- "range": [
- 0,
- 3
- ]
- },
- {
- "name": "CC_RECEIVE_SHADOW",
- "type": "boolean",
- "defines": []
- },
- {
- "name": "CC_USE_LIGHT_PROBE",
- "type": "boolean",
- "defines": [],
- "default": 0
- },
- {
- "name": "CC_USE_MORPH",
- "type": "boolean",
- "defines": []
- },
- {
- "name": "CC_USE_DEBUG_VIEW",
- "type": "number",
- "defines": [],
- "range": [
- 0,
- 3
- ]
- },
- {
- "name": "CC_SURFACES_ENABLE_DEBUG_VIEW",
- "type": "boolean",
- "defines": [
- "CC_USE_DEBUG_VIEW",
- "CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC"
- ]
- },
- {
- "name": "CC_SUPPORT_CASCADED_SHADOW_MAP",
- "type": "boolean",
- "defines": []
- },
- {
- "name": "CC_SHADOWMAP_FORMAT",
- "type": "number",
- "defines": [
- "CC_RECEIVE_SHADOW"
- ],
- "range": [
- 0,
- 3
- ]
- },
- {
- "name": "CC_SHADOWMAP_USE_LINEAR_DEPTH",
- "type": "boolean",
- "defines": [
- "CC_RECEIVE_SHADOW"
- ]
- },
- {
- "name": "CC_DIR_SHADOW_PCF_TYPE",
- "type": "number",
- "defines": [
- "CC_RECEIVE_SHADOW"
- ],
- "range": [
- 0,
- 3
- ]
- },
- {
- "name": "CC_CASCADED_LAYERS_TRANSITION",
- "type": "boolean",
- "defines": [
- "CC_RECEIVE_SHADOW",
- "CC_SUPPORT_CASCADED_SHADOW_MAP"
- ]
- },
- {
- "name": "CC_USE_IBL",
- "type": "number",
- "defines": [],
- "range": [
- 0,
- 2
- ]
- },
- {
- "name": "CC_USE_DIFFUSEMAP",
- "type": "number",
- "defines": [
- "CC_USE_IBL"
- ],
- "range": [
- 0,
- 2
- ]
- },
- {
- "name": "CC_USE_HDR",
- "type": "boolean",
- "defines": [
- "CC_USE_LIGHTMAP",
- "!CC_FORWARD_ADD"
- ]
- },
- {
- "name": "USE_REFLECTION_DENOISE",
- "type": "boolean",
- "defines": []
- },
- {
- "name": "CC_SHADOW_TYPE",
- "type": "number",
- "defines": [
- "CC_RECEIVE_SHADOW"
- ],
- "range": [
- 0,
- 3
- ]
- },
- {
- "name": "CC_DIR_LIGHT_SHADOW_TYPE",
- "type": "number",
- "defines": [
- "CC_RECEIVE_SHADOW",
- "CC_SHADOW_TYPE"
- ],
- "range": [
- 0,
- 3
- ]
- },
- {
- "name": "CC_FORWARD_ADD",
- "type": "boolean",
- "defines": [
- "CC_USE_LIGHTMAP"
- ]
- },
- {
- "name": "CC_DISABLE_DIRECTIONAL_LIGHT",
- "type": "boolean",
- "defines": []
- },
- {
- "name": "CC_IBL_CONVOLUTED",
- "type": "boolean",
- "defines": [
- "USE_REFLECTION_DENOISE",
- "CC_USE_IBL",
- "!CC_USE_REFLECTION_PROBE"
- ]
- },
- {
- "name": "CC_PIPELINE_TYPE",
- "type": "number",
- "defines": [],
- "range": [
- 0,
- 1
- ]
- },
- {
- "name": "CC_FORCE_FORWARD_SHADING",
- "type": "boolean",
- "defines": []
- },
- {
- "name": "CC_ENABLE_CLUSTERED_LIGHT_CULLING",
- "type": "number",
- "defines": [],
- "range": [
- 0,
- 3
- ]
- },
- {
- "name": "CC_USE_RGBE_OUTPUT",
- "type": "boolean",
- "defines": []
- },
- {
- "name": "CC_USE_FLOAT_OUTPUT",
- "type": "boolean",
- "defines": [
- "!CC_USE_RGBE_OUTPUT"
- ]
- },
- {
- "name": "CC_TONE_MAPPING_TYPE",
- "type": "number",
- "defines": [
- "CC_USE_HDR",
- "!CC_USE_RGBE_OUTPUT",
- "!CC_USE_FLOAT_OUTPUT"
- ],
- "range": [
- 0,
- 3
- ]
- },
- {
- "name": "HDR_TONE_MAPPING_ACES",
- "type": "boolean",
- "defines": [
- "CC_USE_HDR",
- "CC_TONE_MAPPING_TYPE",
- "!CC_USE_RGBE_OUTPUT",
- "!CC_USE_FLOAT_OUTPUT"
- ]
- },
- {
- "name": "CC_USE_FOG",
- "type": "number",
- "defines": [],
- "range": [
- 0,
- 4
- ]
- }
- ],
- "name": "pipeline/deferred-lighting|lighting-vs|lighting-fs"
- }
- ],
- "combinations": [],
- "hideInEditor": false
- }
|