{ "__type__": "cc.EffectAsset", "_name": "internal/builtin-reflection-deferred", "_objFlags": 0, "__editorExtras__": {}, "_native": "", "techniques": [ { "passes": [ { "phase": "reflection", "blendState": { "targets": [ { "blend": true, "blendSrc": 2, "blendDst": 4, "blendDstAlpha": 4 } ] }, "program": "internal/builtin-reflection-deferred|standard-vs|standard-fs", "depthStencilState": { "depthTest": true, "depthWrite": false }, "properties": { "tilingOffset": { "value": [ 1, 1, 0, 0 ], "type": 16 }, "mainColor": { "value": [ 1, 1, 1, 1 ], "linear": true, "editor": { "displayName": "Albedo", "type": "color" }, "type": 16, "handleInfo": [ "albedo", 0, 16 ] }, "albedoScale": { "value": [ 1, 1, 1 ], "type": 15, "handleInfo": [ "albedoScaleAndCutoff", 0, 15 ] }, "alphaThreshold": { "value": [ 0.5 ], "editor": { "parent": "USE_ALPHA_TEST" }, "type": 13, "handleInfo": [ "albedoScaleAndCutoff", 3, 13 ] }, "occlusion": { "value": [ 0 ], "type": 13, "handleInfo": [ "pbrParams", 0, 13 ] }, "roughness": { "value": [ 0.8 ], "type": 13, "handleInfo": [ "pbrParams", 1, 13 ] }, "metallic": { "value": [ 0.6 ], "type": 13, "handleInfo": [ "pbrParams", 2, 13 ] }, "normalStrenth": { "value": [ 1 ], "editor": { "parent": "USE_NORMAL_MAP" }, "type": 13, "handleInfo": [ "pbrParams", 3, 13 ] }, "emissive": { "value": [ 0, 0, 0, 1 ], "linear": true, "editor": { "type": "color" }, "type": 16 }, "emissiveScale": { "value": [ 1, 1, 1 ], "type": 15, "handleInfo": [ "emissiveScaleParam", 0, 15 ] }, "mainTexture": { "value": "grey", "editor": { "displayName": "AlbedoMap" }, "type": 28, "handleInfo": [ "albedoMap", 0, 28 ] }, "normalMap": { "value": "normal", "type": 28 }, "pbrMap": { "value": "grey", "type": 28 }, "metallicRoughnessMap": { "value": "grey", "type": 28 }, "occlusionMap": { "value": "white", "type": 28 }, "emissiveMap": { "value": "grey", "type": 28 }, "albedo": { "type": 16, "editor": { "visible": false, "deprecated": true }, "value": [ 1, 1, 1, 1 ] }, "albedoScaleAndCutoff": { "type": 16, "editor": { "visible": false, "deprecated": true }, "value": [ 1, 1, 1, 0.5 ] }, "pbrParams": { "type": 16, "editor": { "visible": false, "deprecated": true }, "value": [ 0, 0.8, 0.6, 1 ] }, "emissiveScaleParam": { "type": 16, "editor": { "visible": false, "deprecated": true }, "value": [ 1, 1, 1, 0 ] }, "albedoMap": { "type": 28, "editor": { "visible": false, "deprecated": true }, "value": "grey" } } } ] } ], "shaders": [ { "blocks": [ { "name": "Constants", "members": [ { "name": "tilingOffset", "type": 16, "count": 1 }, { "name": "albedo", "type": 16, "count": 1 }, { "name": "albedoScaleAndCutoff", "type": 16, "count": 1 }, { "name": "pbrParams", "type": 16, "count": 1 }, { "name": "emissive", "type": 16, "count": 1 }, { "name": "emissiveScaleParam", "type": 16, "count": 1 } ], "defines": [], "stageFlags": 17, "binding": 0 } ], "samplerTextures": [ { "name": "albedoMap", "type": 28, "count": 1, "defines": [ "USE_ALBEDO_MAP" ], "stageFlags": 16, "binding": 1 }, { "name": "normalMap", "type": 28, "count": 1, "defines": [ "USE_NORMAL_MAP" ], "stageFlags": 16, "binding": 2 }, { "name": "pbrMap", "type": 28, "count": 1, "defines": [ "USE_PBR_MAP" ], "stageFlags": 16, "binding": 3 }, { "name": "metallicRoughnessMap", "type": 28, "count": 1, "defines": [ "USE_METALLIC_ROUGHNESS_MAP" ], "stageFlags": 16, "binding": 4 }, { "name": "occlusionMap", "type": 28, "count": 1, "defines": [ "USE_OCCLUSION_MAP" ], "stageFlags": 16, "binding": 5 }, { "name": "emissiveMap", "type": 28, "count": 1, "defines": [ "USE_EMISSIVE_MAP" ], "stageFlags": 16, "binding": 6 } ], "samplers": [], "textures": [], "buffers": [], "images": [], "subpassInputs": [], "attributes": [ { "name": "a_position", "defines": [], "format": 32, "location": 0 }, { "name": "a_normal", "defines": [], "format": 32, "location": 1 }, { "name": "a_texCoord", "defines": [], "format": 21, "location": 2 }, { "name": "a_tangent", "defines": [], "format": 44, "location": 3 }, { "name": "a_joints", "defines": [ "CC_USE_SKINNING" ], "location": 4 }, { "name": "a_weights", "defines": [ "CC_USE_SKINNING" ], "format": 44, "location": 5 }, { "name": "a_jointAnimInfo", "defines": [ "USE_INSTANCING", "CC_USE_BAKED_ANIMATION" ], "format": 44, "isInstanced": true, "location": 6 }, { "name": "a_matWorld0", "defines": [ "USE_INSTANCING" ], "format": 44, "isInstanced": true, "location": 7 }, { "name": "a_matWorld1", "defines": [ "USE_INSTANCING" ], "format": 44, "isInstanced": true, "location": 8 }, { "name": "a_matWorld2", "defines": [ "USE_INSTANCING" ], "format": 44, "isInstanced": true, "location": 9 }, { "name": "a_lightingMapUVParam", "defines": [ "USE_INSTANCING", "CC_USE_LIGHTMAP" ], "format": 44, "isInstanced": true, "location": 10 }, { "name": "a_localShadowBiasAndProbeId", "defines": [ "USE_INSTANCING" ], "format": 44, "isInstanced": true, "location": 11 }, { "name": "a_reflectionProbeData", "defines": [ "USE_INSTANCING", "CC_USE_REFLECTION_PROBE" ], "format": 44, "isInstanced": true, "location": 12 }, { "name": "a_sh_linear_const_r", "defines": [ "USE_INSTANCING", "CC_USE_LIGHT_PROBE" ], "format": 44, "isInstanced": true, "location": 13 }, { "name": "a_sh_linear_const_g", "defines": [ "USE_INSTANCING", "CC_USE_LIGHT_PROBE" ], "format": 44, "isInstanced": true, "location": 14 }, { "name": "a_sh_linear_const_b", "defines": [ "USE_INSTANCING", "CC_USE_LIGHT_PROBE" ], "format": 44, "isInstanced": true, "location": 15 }, { "name": "a_vertexId", "defines": [ "CC_USE_MORPH" ], "format": 11, "location": 16 }, { "name": "a_color", "defines": [ "USE_VERTEX_COLOR" ], "format": 44, "location": 17 }, { "name": "a_texCoord1", "defines": [], "format": 21, "location": 18 } ], "varyings": [ { "name": "v_fog_factor", "type": 13, "count": 1, "defines": [ "!CC_USE_ACCURATE_FOG" ], "stageFlags": 17, "location": 0 }, { "name": "v_shadowPos", "type": 16, "count": 1, "defines": [], "stageFlags": 17, "location": 1 }, { "name": "v_sh_linear_const_r", "type": 16, "count": 1, "defines": [ "CC_USE_LIGHT_PROBE", "USE_INSTANCING" ], "stageFlags": 17, "location": 2 }, { "name": "v_sh_linear_const_g", "type": 16, "count": 1, "defines": [ "CC_USE_LIGHT_PROBE", "USE_INSTANCING" ], "stageFlags": 17, "location": 3 }, { "name": "v_sh_linear_const_b", "type": 16, "count": 1, "defines": [ "CC_USE_LIGHT_PROBE", "USE_INSTANCING" ], "stageFlags": 17, "location": 4 }, { "name": "v_color", "type": 16, "count": 1, "defines": [ "USE_VERTEX_COLOR" ], "stageFlags": 17, "location": 5 }, { "name": "v_position", "type": 15, "count": 1, "defines": [], "stageFlags": 17, "location": 6 }, { "name": "v_normal", "type": 15, "count": 1, "defines": [], "stageFlags": 17, "location": 7 }, { "name": "v_uv", "type": 14, "count": 1, "defines": [], "stageFlags": 17, "location": 8 }, { "name": "v_uv1", "type": 14, "count": 1, "defines": [], "stageFlags": 17, "location": 9 }, { "name": "v_tangent", "type": 15, "count": 1, "defines": [ "USE_NORMAL_MAP" ], "stageFlags": 17, "location": 10 }, { "name": "v_bitangent", "type": 15, "count": 1, "defines": [ "USE_NORMAL_MAP" ], "stageFlags": 17, "location": 11 }, { "name": "v_luv", "type": 15, "count": 1, "defines": [ "CC_USE_LIGHTMAP", "!CC_FORWARD_ADD" ], "stageFlags": 17, "location": 12 } ], "fragColors": [ { "name": "fragColorX", "typename": "vec4", "type": 16, "count": 1, "defines": [], "stageFlags": 16, "location": 0 } ], "descriptors": [ { "rate": 0, "blocks": [ { "tags": { "builtin": "local" }, "name": "CCMorph", "members": [ { "name": "cc_displacementWeights", "typename": "vec4", "type": 16, "count": 15, "isArray": true }, { "name": "cc_displacementTextureInfo", "typename": "vec4", "type": 16, "count": 1 } ], "defines": [ "CC_USE_MORPH" ], "stageFlags": 1 }, { "tags": { "builtin": "local" }, "name": "CCSkinningTexture", "members": [ { "name": "cc_jointTextureInfo", "typename": "vec4", "type": 16, "count": 1, "precision": "highp " } ], "defines": [ "CC_USE_SKINNING", "CC_USE_BAKED_ANIMATION" ], "stageFlags": 1 }, { "tags": { "builtin": "local" }, "name": "CCSkinningAnimation", "members": [ { "name": "cc_jointAnimInfo", "typename": "vec4", "type": 16, "count": 1, "precision": "highp " } ], "defines": [ "CC_USE_SKINNING", "CC_USE_BAKED_ANIMATION" ], "stageFlags": 1 }, { "tags": { "builtin": "local" }, "name": "CCSkinning", "members": [ { "name": "cc_joints", "typename": "vec4", "type": 16, "count": 0, "precision": "highp ", "isArray": true } ], "defines": [ "CC_USE_SKINNING", "!CC_USE_BAKED_ANIMATION", "!CC_USE_REAL_TIME_JOINT_TEXTURE" ], "stageFlags": 1 }, { "tags": { "builtin": "local" }, "name": "CCLocal", "members": [ { "name": "cc_matWorld", "typename": "mat4", "type": 25, "count": 1, "precision": "highp " }, { "name": "cc_matWorldIT", "typename": "mat4", "type": 25, "count": 1, "precision": "highp " }, { "name": "cc_lightingMapUVParam", "typename": "vec4", "type": 16, "count": 1, "precision": "highp " }, { "name": "cc_localShadowBias", "typename": "vec4", "type": 16, "count": 1, "precision": "highp " }, { "name": "cc_reflectionProbeData1", "typename": "vec4", "type": 16, "count": 1, "precision": "highp " }, { "name": "cc_reflectionProbeData2", "typename": "vec4", "type": 16, "count": 1, "precision": "highp " }, { "name": "cc_reflectionProbeBlendData1", "typename": "vec4", "type": 16, "count": 1, "precision": "highp " }, { "name": "cc_reflectionProbeBlendData2", "typename": "vec4", "type": 16, "count": 1, "precision": "highp " } ], "defines": [ "!USE_INSTANCING" ], "stageFlags": 17 }, { "tags": { "builtin": "local" }, "name": "CCSH", "members": [ { "name": "cc_sh_linear_const_r", "typename": "vec4", "type": 16, "count": 1 }, { "name": "cc_sh_linear_const_g", "typename": "vec4", "type": 16, "count": 1 }, { "name": "cc_sh_linear_const_b", "typename": "vec4", "type": 16, "count": 1 }, { "name": "cc_sh_quadratic_r", "typename": "vec4", "type": 16, "count": 1 }, { "name": "cc_sh_quadratic_g", "typename": "vec4", "type": 16, "count": 1 }, { "name": "cc_sh_quadratic_b", "typename": "vec4", "type": 16, "count": 1 }, { "name": "cc_sh_quadratic_a", "typename": "vec4", "type": 16, "count": 1 } ], "defines": [ "CC_USE_LIGHT_PROBE", "!USE_INSTANCING" ], "stageFlags": 16 } ], "samplerTextures": [ { "tags": { "builtin": "local" }, "name": "cc_PositionDisplacements", "typename": "sampler2D", "type": 28, "count": 1, "defines": [ "CC_USE_MORPH", "CC_MORPH_TARGET_HAS_POSITION" ], "stageFlags": 1 }, { "tags": { "builtin": "local" }, "name": "cc_NormalDisplacements", "typename": "sampler2D", "type": 28, "count": 1, "defines": [ "CC_USE_MORPH", "CC_MORPH_TARGET_HAS_NORMAL" ], "stageFlags": 1 }, { "tags": { "builtin": "local" }, "name": "cc_TangentDisplacements", "typename": "sampler2D", "type": 28, "count": 1, "defines": [ "CC_USE_MORPH", "CC_MORPH_TARGET_HAS_TANGENT" ], "stageFlags": 1 }, { "tags": { "builtin": "local" }, "name": "cc_jointTexture", "typename": "sampler2D", "type": 28, "count": 1, "precision": "highp ", "defines": [ "CC_USE_SKINNING", "CC_USE_BAKED_ANIMATION" ], "stageFlags": 1 }, { "tags": { "builtin": "local" }, "name": "cc_realtimeJoint", "typename": "sampler2D", "type": 28, "count": 1, "precision": "highp ", "defines": [ "CC_USE_SKINNING", "!CC_USE_BAKED_ANIMATION", "CC_USE_REAL_TIME_JOINT_TEXTURE" ], "stageFlags": 1 }, { "tags": { "builtin": "local" }, "name": "cc_reflectionProbeCubemap", "typename": "samplerCube", "type": 31, "count": 1, "defines": [ "CC_USE_REFLECTION_PROBE" ], "stageFlags": 16 }, { "tags": { "builtin": "local" }, "name": "cc_reflectionProbePlanarMap", "typename": "sampler2D", "type": 28, "count": 1, "defines": [ "CC_USE_REFLECTION_PROBE" ], "stageFlags": 16 }, { "tags": { "builtin": "local" }, "name": "cc_reflectionProbeDataMap", "typename": "sampler2D", "type": 28, "count": 1, "defines": [ "CC_USE_REFLECTION_PROBE" ], "stageFlags": 16 }, { "tags": { "builtin": "local" }, "name": "cc_reflectionProbeBlendCubemap", "typename": "samplerCube", "type": 31, "count": 1, "defines": [ "CC_USE_REFLECTION_PROBE" ], "stageFlags": 16 }, { "tags": { "builtin": "local" }, "name": "cc_lightingMap", "typename": "sampler2D", "type": 28, "count": 1, "defines": [ "CC_USE_LIGHTMAP", "!CC_FORWARD_ADD" ], "stageFlags": 16 }, { "tags": { "builtin": "local" }, "name": "cc_reflectionTexture", "typename": "sampler2D", "type": 28, "count": 1, "defines": [], "stageFlags": 16 } ], "samplers": [], "textures": [], "buffers": [], "images": [], "subpassInputs": [] }, { "rate": 1, "blocks": [ { "name": "Constants", "members": [ { "name": "tilingOffset", "type": 16, "count": 1 }, { "name": "albedo", "type": 16, "count": 1 }, { "name": "albedoScaleAndCutoff", "type": 16, "count": 1 }, { "name": "pbrParams", "type": 16, "count": 1 }, { "name": "emissive", "type": 16, "count": 1 }, { "name": "emissiveScaleParam", "type": 16, "count": 1 } ], "defines": [], "stageFlags": 17, "binding": 0 } ], "samplerTextures": [ { "name": "albedoMap", "type": 28, "count": 1, "defines": [ "USE_ALBEDO_MAP" ], "stageFlags": 16, "binding": 1 }, { "name": "normalMap", "type": 28, "count": 1, "defines": [ "USE_NORMAL_MAP" ], "stageFlags": 16, "binding": 2 }, { "name": "pbrMap", "type": 28, "count": 1, "defines": [ "USE_PBR_MAP" ], "stageFlags": 16, "binding": 3 }, { "name": "metallicRoughnessMap", "type": 28, "count": 1, "defines": [ "USE_METALLIC_ROUGHNESS_MAP" ], "stageFlags": 16, "binding": 4 }, { "name": "occlusionMap", "type": 28, "count": 1, "defines": [ "USE_OCCLUSION_MAP" ], "stageFlags": 16, "binding": 5 }, { "name": "emissiveMap", "type": 28, "count": 1, "defines": [ "USE_EMISSIVE_MAP" ], "stageFlags": 16, "binding": 6 } ], "samplers": [], "textures": [], "buffers": [], "images": [], "subpassInputs": [] }, { "rate": 2, "blocks": [], "samplerTextures": [], "samplers": [], "textures": [], "buffers": [], "images": [], "subpassInputs": [] }, { "rate": 3, "blocks": [ { "tags": { "builtin": "global" }, "name": "CCGlobal", "members": [ { "name": "cc_time", "typename": "vec4", "type": 16, "count": 1, "precision": "highp " }, { "name": "cc_screenSize", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_nativeSize", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_probeInfo", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_debug_view_mode", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " } ], "defines": [], "stageFlags": 17 }, { "tags": { "builtin": "global" }, "name": "CCCamera", "members": [ { "name": "cc_matView", "typename": "mat4", "type": 25, "count": 1, "precision": "highp " }, { "name": "cc_matViewInv", "typename": "mat4", "type": 25, "count": 1, "precision": "highp " }, { "name": "cc_matProj", "typename": "mat4", "type": 25, "count": 1, "precision": "highp " }, { "name": "cc_matProjInv", "typename": "mat4", "type": 25, "count": 1, "precision": "highp " }, { "name": "cc_matViewProj", "typename": "mat4", "type": 25, "count": 1, "precision": "highp " }, { "name": "cc_matViewProjInv", "typename": "mat4", "type": 25, "count": 1, "precision": "highp " }, { "name": "cc_cameraPos", "typename": "vec4", "type": 16, "count": 1, "precision": "highp " }, { "name": "cc_surfaceTransform", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_screenScale", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_exposure", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_mainLitDir", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_mainLitColor", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_ambientSky", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_ambientGround", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_fogColor", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_fogBase", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_fogAdd", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_nearFar", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_viewPort", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " } ], "defines": [], "stageFlags": 17 }, { "tags": { "builtin": "global" }, "name": "CCShadow", "members": [ { "name": "cc_matLightView", "typename": "mat4", "type": 25, "count": 1, "precision": "highp " }, { "name": "cc_matLightViewProj", "typename": "mat4", "type": 25, "count": 1, "precision": "highp " }, { "name": "cc_shadowInvProjDepthInfo", "typename": "vec4", "type": 16, "count": 1, "precision": "highp " }, { "name": "cc_shadowProjDepthInfo", "typename": "vec4", "type": 16, "count": 1, "precision": "highp " }, { "name": "cc_shadowProjInfo", "typename": "vec4", "type": 16, "count": 1, "precision": "highp " }, { "name": "cc_shadowNFLSInfo", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_shadowWHPBInfo", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_shadowLPNNInfo", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " }, { "name": "cc_shadowColor", "typename": "vec4", "type": 16, "count": 1, "precision": "lowp " }, { "name": "cc_planarNDInfo", "typename": "vec4", "type": 16, "count": 1, "precision": "mediump " } ], "defines": [], "stageFlags": 17 }, { "tags": { "builtin": "global" }, "name": "CCCSM", "members": [ { "name": "cc_csmViewDir0", "typename": "vec4", "type": 16, "count": 4, "precision": "highp ", "isArray": true }, { "name": "cc_csmViewDir1", "typename": "vec4", "type": 16, "count": 4, "precision": "highp ", "isArray": true }, { "name": "cc_csmViewDir2", "typename": "vec4", "type": 16, "count": 4, "precision": "highp ", "isArray": true }, { "name": "cc_csmAtlas", "typename": "vec4", "type": 16, "count": 4, "precision": "highp ", "isArray": true }, { "name": "cc_matCSMViewProj", "typename": "mat4", "type": 25, "count": 4, "precision": "highp ", "isArray": true }, { "name": "cc_csmProjDepthInfo", "typename": "vec4", "type": 16, "count": 4, "precision": "highp ", "isArray": true }, { "name": "cc_csmProjInfo", "typename": "vec4", "type": 16, "count": 4, "precision": "highp ", "isArray": true }, { "name": "cc_csmSplitsInfo", "typename": "vec4", "type": 16, "count": 1, "precision": "highp " } ], "defines": [ "CC_SUPPORT_CASCADED_SHADOW_MAP" ], "stageFlags": 17 } ], "samplerTextures": [ { "tags": { "builtin": "global" }, "name": "cc_shadowMap", "typename": "sampler2D", "type": 28, "count": 1, "precision": "highp ", "defines": [ "CC_RECEIVE_SHADOW" ], "stageFlags": 17 }, { "tags": { "builtin": "global" }, "name": "cc_spotShadowMap", "typename": "sampler2D", "type": 28, "count": 1, "precision": "highp ", "defines": [ "CC_RECEIVE_SHADOW" ], "stageFlags": 17 }, { "tags": { "builtin": "global" }, "name": "cc_environment", "typename": "samplerCube", "type": 31, "count": 1, "defines": [], "stageFlags": 16 }, { "tags": { "builtin": "global" }, "name": "cc_diffuseMap", "typename": "samplerCube", "type": 31, "count": 1, "defines": [ "CC_USE_IBL", "CC_USE_DIFFUSEMAP" ], "stageFlags": 16 } ], "samplers": [], "textures": [], "buffers": [], "images": [], "subpassInputs": [] } ], "hash": 1394391896, "glsl4": { "vert": "#extension GL_EXT_shader_explicit_arithmetic_types_int32: require\nprecision highp float;\n#define QUATER_PI 0.78539816340\n#define HALF_PI 1.57079632679\n#define PI 3.14159265359\n#define PI2 6.28318530718\n#define PI4 12.5663706144\n#define INV_QUATER_PI 1.27323954474\n#define INV_HALF_PI 0.63661977237\n#define INV_PI 0.31830988618\n#define INV_PI2 0.15915494309\n#define INV_PI4 0.07957747155\n#define EPSILON 1e-6\n#define EPSILON_LOWP 1e-4\n#define LOG2 1.442695\n#define EXP_VALUE 2.71828183\n#define FP_MAX 65504.0\n#define FP_SCALE 0.0009765625\n#define FP_SCALE_INV 1024.0\n#define GRAY_VECTOR vec3(0.299, 0.587, 0.114)\n#define LIGHT_MAP_TYPE_DISABLED 0\n#define LIGHT_MAP_TYPE_ALL_IN_ONE 1\n#define LIGHT_MAP_TYPE_INDIRECT_OCCLUSION 2\n#define REFLECTION_PROBE_TYPE_NONE 0\n#define REFLECTION_PROBE_TYPE_CUBE 1\n#define REFLECTION_PROBE_TYPE_PLANAR 2\n#define REFLECTION_PROBE_TYPE_BLEND 3\n#define REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX 4\n#define LIGHT_TYPE_DIRECTIONAL 0.0\n#define LIGHT_TYPE_SPHERE 1.0\n#define LIGHT_TYPE_SPOT 2.0\n#define LIGHT_TYPE_POINT 3.0\n#define LIGHT_TYPE_RANGED_DIRECTIONAL 4.0\n#define IS_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_DIRECTIONAL)) < EPSILON_LOWP)\n#define IS_SPHERE_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPHERE)) < EPSILON_LOWP)\n#define IS_SPOT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPOT)) < EPSILON_LOWP)\n#define IS_POINT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_POINT)) < EPSILON_LOWP)\n#define IS_RANGED_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_RANGED_DIRECTIONAL)) < EPSILON_LOWP)\n#define TONE_MAPPING_ACES 0\n#define TONE_MAPPING_LINEAR 1\n#define SURFACES_MAX_TRANSMIT_DEPTH_VALUE 999999.0\n#ifndef CC_SURFACES_DEBUG_VIEW_SINGLE\n #define CC_SURFACES_DEBUG_VIEW_SINGLE 1\n#endif\n#ifndef CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC\n #define CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC 2\n#endif\nstruct StandardVertInput {\n highp vec4 position;\n vec3 normal;\n vec4 tangent;\n};\nlayout(location = 0) in vec3 a_position;\nlayout(location = 1) in vec3 a_normal;\nlayout(location = 2) in vec2 a_texCoord;\nlayout(location = 3) in vec4 a_tangent;\n#if CC_USE_SKINNING\n layout(location = 4) in u32vec4 a_joints;\n layout(location = 5) in vec4 a_weights;\n#endif\n#if USE_INSTANCING\n #if CC_USE_BAKED_ANIMATION\n layout(location = 6) in highp vec4 a_jointAnimInfo;\n #endif\n layout(location = 7) in vec4 a_matWorld0;\n layout(location = 8) in vec4 a_matWorld1;\n layout(location = 9) in vec4 a_matWorld2;\n #if CC_USE_LIGHTMAP\n layout(location = 10) in vec4 a_lightingMapUVParam;\n #endif\n #if CC_USE_REFLECTION_PROBE || CC_RECEIVE_SHADOW\n #if CC_RECEIVE_SHADOW\n #endif\n layout(location = 11) in vec4 a_localShadowBiasAndProbeId;\n #endif\n #if CC_USE_REFLECTION_PROBE\n layout(location = 12) in vec4 a_reflectionProbeData;\n #endif\n #if CC_USE_LIGHT_PROBE\n layout(location = 13) in vec4 a_sh_linear_const_r;\n layout(location = 14) in vec4 a_sh_linear_const_g;\n layout(location = 15) in vec4 a_sh_linear_const_b;\n #endif\n#endif\n#if CC_USE_MORPH\n int getVertexId() {\n return gl_VertexIndex;\n }\n#endif\nhighp float decode32 (highp vec4 rgba) {\n rgba = rgba * 255.0;\n highp float Sign = 1.0 - (step(128.0, (rgba[3]) + 0.5)) * 2.0;\n highp float Exponent = 2.0 * (mod(float(int((rgba[3]) + 0.5)), 128.0)) + (step(128.0, (rgba[2]) + 0.5)) - 127.0;\n highp float Mantissa = (mod(float(int((rgba[2]) + 0.5)), 128.0)) * 65536.0 + rgba[1] * 256.0 + rgba[0] + 8388608.0;\n return Sign * exp2(Exponent - 23.0) * Mantissa;\n}\n#if CC_USE_MORPH\n layout(set = 2, binding = 4) uniform CCMorph {\n vec4 cc_displacementWeights[15];\n vec4 cc_displacementTextureInfo;\n };\n #if CC_MORPH_TARGET_HAS_POSITION\n layout(set = 2, binding = 8) uniform sampler2D cc_PositionDisplacements;\n #endif\n #if CC_MORPH_TARGET_HAS_NORMAL\n layout(set = 2, binding = 9) uniform sampler2D cc_NormalDisplacements;\n #endif\n #if CC_MORPH_TARGET_HAS_TANGENT\n layout(set = 2, binding = 10) uniform sampler2D cc_TangentDisplacements;\n #endif\n vec2 getPixelLocation(vec2 textureResolution, int pixelIndex) {\n float pixelIndexF = float(pixelIndex);\n float x = mod(pixelIndexF, textureResolution.x);\n float y = floor(pixelIndexF / textureResolution.x);\n return vec2(x, y);\n }\n vec2 getPixelCoordFromLocation(vec2 location, vec2 textureResolution) {\n return (vec2(location.x, location.y) + .5) / textureResolution;\n }\n #if CC_DEVICE_SUPPORT_FLOAT_TEXTURE\n vec4 fetchVec3ArrayFromTexture(sampler2D tex, int pixelIndex) {\n ivec2 texSize = textureSize(tex, 0);\n return texelFetch(tex, ivec2(pixelIndex % texSize.x, pixelIndex / texSize.x), 0);\n }\n #else\n vec4 fetchVec3ArrayFromTexture(sampler2D tex, int elementIndex) {\n int pixelIndex = elementIndex * 4;\n vec2 location = getPixelLocation(cc_displacementTextureInfo.xy, pixelIndex);\n vec2 x = getPixelCoordFromLocation(location + vec2(0.0, 0.0), cc_displacementTextureInfo.xy);\n vec2 y = getPixelCoordFromLocation(location + vec2(1.0, 0.0), cc_displacementTextureInfo.xy);\n vec2 z = getPixelCoordFromLocation(location + vec2(2.0, 0.0), cc_displacementTextureInfo.xy);\n return vec4(\n decode32(texture(tex, x)),\n decode32(texture(tex, y)),\n decode32(texture(tex, z)),\n 1.0\n );\n }\n #endif\n float getDisplacementWeight(int index) {\n int quot = index / 4;\n int remainder = index - quot * 4;\n if (remainder == 0) {\n return cc_displacementWeights[quot].x;\n } else if (remainder == 1) {\n return cc_displacementWeights[quot].y;\n } else if (remainder == 2) {\n return cc_displacementWeights[quot].z;\n } else {\n return cc_displacementWeights[quot].w;\n }\n }\n vec3 getVec3DisplacementFromTexture(sampler2D tex, int vertexIndex) {\n #if CC_MORPH_PRECOMPUTED\n return fetchVec3ArrayFromTexture(tex, vertexIndex).rgb;\n #else\n vec3 result = vec3(0, 0, 0);\n int nVertices = int(cc_displacementTextureInfo.z);\n for (int iTarget = 0; iTarget < CC_MORPH_TARGET_COUNT; ++iTarget) {\n result += (fetchVec3ArrayFromTexture(tex, nVertices * iTarget + vertexIndex).rgb * getDisplacementWeight(iTarget));\n }\n return result;\n #endif\n }\n #if CC_MORPH_TARGET_HAS_POSITION\n vec3 getPositionDisplacement(int vertexId) {\n return getVec3DisplacementFromTexture(cc_PositionDisplacements, vertexId);\n }\n #endif\n #if CC_MORPH_TARGET_HAS_NORMAL\n vec3 getNormalDisplacement(int vertexId) {\n return getVec3DisplacementFromTexture(cc_NormalDisplacements, vertexId);\n }\n #endif\n #if CC_MORPH_TARGET_HAS_TANGENT\n vec3 getTangentDisplacement(int vertexId) {\n return getVec3DisplacementFromTexture(cc_TangentDisplacements, vertexId);\n }\n #endif\n void applyMorph (inout vec4 position, inout vec3 normal, inout vec4 tangent) {\n int vertexId = getVertexId();\n #if CC_MORPH_TARGET_HAS_POSITION\n position.xyz = position.xyz + getPositionDisplacement(vertexId);\n #endif\n #if CC_MORPH_TARGET_HAS_NORMAL\n normal.xyz = normal.xyz + getNormalDisplacement(vertexId);\n #endif\n #if CC_MORPH_TARGET_HAS_TANGENT\n tangent.xyz = tangent.xyz + getTangentDisplacement(vertexId);\n #endif\n }\n void applyMorph (inout vec4 position) {\n #if CC_MORPH_TARGET_HAS_POSITION\n position.xyz = position.xyz + getPositionDisplacement(getVertexId());\n #endif\n }\n#endif\n#if CC_USE_SKINNING\n #if CC_USE_BAKED_ANIMATION\n layout(set = 2, binding = 3) uniform CCSkinningTexture {\n highp vec4 cc_jointTextureInfo;\n };\n layout(set = 2, binding = 2) uniform CCSkinningAnimation {\n highp vec4 cc_jointAnimInfo;\n };\n layout(set = 2, binding = 7) uniform highp sampler2D cc_jointTexture;\n void CCGetJointTextureCoords(float pixelsPerJoint, float jointIdx, out highp float x, out highp float y, out highp float invSize)\n {\n #if USE_INSTANCING\n highp float temp = pixelsPerJoint * (a_jointAnimInfo.x * a_jointAnimInfo.y + jointIdx) + a_jointAnimInfo.z;\n #else\n highp float temp = pixelsPerJoint * (cc_jointAnimInfo.x * cc_jointTextureInfo.y + jointIdx) + cc_jointTextureInfo.z;\n #endif\n invSize = cc_jointTextureInfo.w;\n highp float tempY = floor(temp * invSize);\n x = floor(temp - tempY * cc_jointTextureInfo.x);\n y = (tempY + 0.5) * invSize;\n }\n #else\n #if CC_USE_REAL_TIME_JOINT_TEXTURE\n layout(set = 2, binding = 7) uniform highp sampler2D cc_realtimeJoint;\n #else\n layout(set = 2, binding = 3) uniform CCSkinning {\n highp vec4 cc_joints[CC_JOINT_UNIFORM_CAPACITY * 3];\n };\n #endif\n #endif\n #if CC_USE_BAKED_ANIMATION\n #if CC_DEVICE_SUPPORT_FLOAT_TEXTURE\n mat4 getJointMatrix (float i) {\n highp float x, y, invSize;\n CCGetJointTextureCoords(3.0, i, x, y, invSize);\n vec4 v1 = texture(cc_jointTexture, vec2((x + 0.5) * invSize, y));\n vec4 v2 = texture(cc_jointTexture, vec2((x + 1.5) * invSize, y));\n vec4 v3 = texture(cc_jointTexture, vec2((x + 2.5) * invSize, y));\n return mat4(vec4(v1.xyz, 0.0), vec4(v2.xyz, 0.0), vec4(v3.xyz, 0.0), vec4(v1.w, v2.w, v3.w, 1.0));\n }\n #else\n mat4 getJointMatrix (float i) {\n highp float x, y, invSize;\n CCGetJointTextureCoords(12.0, i, x, y, invSize);\n vec4 v1 = vec4(\n decode32(texture(cc_jointTexture, vec2((x + 0.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 1.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 2.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 3.5) * invSize, y)))\n );\n vec4 v2 = vec4(\n decode32(texture(cc_jointTexture, vec2((x + 4.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 5.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 6.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 7.5) * invSize, y)))\n );\n vec4 v3 = vec4(\n decode32(texture(cc_jointTexture, vec2((x + 8.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 9.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 10.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 11.5) * invSize, y)))\n );\n return mat4(vec4(v1.xyz, 0.0), vec4(v2.xyz, 0.0), vec4(v3.xyz, 0.0), vec4(v1.w, v2.w, v3.w, 1.0));\n }\n #endif\n #else\n #if CC_USE_REAL_TIME_JOINT_TEXTURE\n #if CC_DEVICE_SUPPORT_FLOAT_TEXTURE\n mat4 getJointMatrix (float i) {\n float x = i;\n vec4 v1 = texture(cc_realtimeJoint, vec2( x / 256.0, 0.5 / 3.0));\n vec4 v2 = texture(cc_realtimeJoint, vec2( x / 256.0, 1.5 / 3.0));\n vec4 v3 = texture(cc_realtimeJoint, vec2( x / 256.0, 2.5 / 3.0));\n return mat4(vec4(v1.xyz, 0.0), vec4(v2.xyz, 0.0), vec4(v3.xyz, 0.0), vec4(v1.w, v2.w, v3.w, 1.0));\n }\n #else\n mat4 getJointMatrix (float i) {\n float x = 4.0 * i;\n vec4 v1 = vec4(\n decode32(texture(cc_realtimeJoint, vec2((x + 0.5)/ 1024.0, 0.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 1.5)/ 1024.0, 0.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 2.5)/ 1024.0, 0.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 3.5)/ 1024.0, 0.5 / 3.0)))\n );\n vec4 v2 = vec4(\n decode32(texture(cc_realtimeJoint, vec2((x + 0.5)/ 1024.0, 1.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 1.5)/ 1024.0, 1.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 2.5)/ 1024.0, 1.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 3.5)/ 1024.0, 1.5 / 3.0)))\n );\n vec4 v3 = vec4(\n decode32(texture(cc_realtimeJoint, vec2((x + 0.5)/ 1024.0, 2.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 1.5)/ 1024.0, 2.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 2.5)/ 1024.0, 2.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 3.5)/ 1024.0, 2.5 / 3.0)))\n );\n return mat4(vec4(v1.xyz, 0.0), vec4(v2.xyz, 0.0), vec4(v3.xyz, 0.0), vec4(v1.w, v2.w, v3.w, 1.0));\n }\n #endif\n #else\n mat4 getJointMatrix (float i) {\n int idx = int(i);\n vec4 v1 = cc_joints[idx * 3];\n vec4 v2 = cc_joints[idx * 3 + 1];\n vec4 v3 = cc_joints[idx * 3 + 2];\n return mat4(vec4(v1.xyz, 0.0), vec4(v2.xyz, 0.0), vec4(v3.xyz, 0.0), vec4(v1.w, v2.w, v3.w, 1.0));\n }\n #endif\n #endif\n mat4 skinMatrix () {\n vec4 joints = vec4(a_joints);\n return getJointMatrix(joints.x) * a_weights.x\n + getJointMatrix(joints.y) * a_weights.y\n + getJointMatrix(joints.z) * a_weights.z\n + getJointMatrix(joints.w) * a_weights.w;\n }\n void CCSkin (inout vec4 position) {\n mat4 m = skinMatrix();\n position = m * position;\n }\n void CCSkin (inout vec4 position, inout vec3 normal, inout vec4 tangent) {\n mat4 m = skinMatrix();\n position = m * position;\n normal = (m * vec4(normal, 0.0)).xyz;\n tangent.xyz = (m * vec4(tangent.xyz, 0.0)).xyz;\n }\n#endif\nvoid CCVertInput(inout StandardVertInput In)\n{\n In.position = vec4(a_position, 1.0);\n In.normal = a_normal;\n In.tangent = a_tangent;\n #if CC_USE_MORPH\n applyMorph(In.position, In.normal, In.tangent);\n #endif\n #if CC_USE_SKINNING\n CCSkin(In.position, In.normal, In.tangent);\n #endif\n}\nlayout(set = 0, binding = 0) uniform CCGlobal {\n highp vec4 cc_time;\n mediump vec4 cc_screenSize;\n mediump vec4 cc_nativeSize;\n mediump vec4 cc_probeInfo;\n mediump vec4 cc_debug_view_mode;\n};\nlayout(set = 0, binding = 1) uniform CCCamera {\n highp mat4 cc_matView;\n highp mat4 cc_matViewInv;\n highp mat4 cc_matProj;\n highp mat4 cc_matProjInv;\n highp mat4 cc_matViewProj;\n highp mat4 cc_matViewProjInv;\n highp vec4 cc_cameraPos;\n mediump vec4 cc_surfaceTransform;\n mediump vec4 cc_screenScale;\n mediump vec4 cc_exposure;\n mediump vec4 cc_mainLitDir;\n mediump vec4 cc_mainLitColor;\n mediump vec4 cc_ambientSky;\n mediump vec4 cc_ambientGround;\n mediump vec4 cc_fogColor;\n mediump vec4 cc_fogBase;\n mediump vec4 cc_fogAdd;\n mediump vec4 cc_nearFar;\n mediump vec4 cc_viewPort;\n};\n#if !USE_INSTANCING\n layout(set = 2, binding = 0) uniform CCLocal {\n highp mat4 cc_matWorld;\n highp mat4 cc_matWorldIT;\n highp vec4 cc_lightingMapUVParam;\n highp vec4 cc_localShadowBias;\n highp vec4 cc_reflectionProbeData1;\n highp vec4 cc_reflectionProbeData2;\n highp vec4 cc_reflectionProbeBlendData1;\n highp vec4 cc_reflectionProbeBlendData2;\n };\n#endif\nvoid CCGetWorldMatrixFull(out mat4 matWorld, out mat4 matWorldIT)\n{\n #if USE_INSTANCING\n matWorld = mat4(\n vec4(a_matWorld0.xyz, 0.0),\n vec4(a_matWorld1.xyz, 0.0),\n vec4(a_matWorld2.xyz, 0.0),\n vec4(a_matWorld0.w, a_matWorld1.w, a_matWorld2.w, 1.0)\n );\n vec3 scale = 1.0 / vec3(length(a_matWorld0.xyz), length(a_matWorld1.xyz), length(a_matWorld2.xyz));\n vec3 scale2 = scale * scale;\n matWorldIT = mat4(\n vec4(a_matWorld0.xyz * scale2.x, 0.0),\n vec4(a_matWorld1.xyz * scale2.y, 0.0),\n vec4(a_matWorld2.xyz * scale2.z, 0.0),\n vec4(0.0, 0.0, 0.0, 1.0)\n );\n #else\n matWorld = cc_matWorld;\n matWorldIT = cc_matWorldIT;\n #endif\n}\nlayout(set = 1, binding = 0) uniform Constants {\n vec4 tilingOffset;\n vec4 albedo;\n vec4 albedoScaleAndCutoff;\n vec4 pbrParams;\n vec4 emissive;\n vec4 emissiveScaleParam;\n};\n#if CC_USE_FOG != 4\n float LinearFog(vec4 pos, vec3 cameraPos, float fogStart, float fogEnd) {\n vec4 wPos = pos;\n float cam_dis = distance(cameraPos, wPos.xyz);\n return clamp((fogEnd - cam_dis) / (fogEnd - fogStart), 0., 1.);\n }\n float ExpFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * fogDensity);\n return f;\n }\n float ExpSquaredFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * cam_dis * fogDensity * fogDensity);\n return f;\n }\n float LayeredFog(vec4 pos, vec3 cameraPos, float fogTop, float fogRange, float fogAtten) {\n vec4 wPos = pos;\n vec3 camWorldProj = cameraPos.xyz;\n camWorldProj.y = 0.;\n vec3 worldPosProj = wPos.xyz;\n worldPosProj.y = 0.;\n float fDeltaD = distance(worldPosProj, camWorldProj) / fogAtten * 2.0;\n float fDeltaY, fDensityIntegral;\n if (cameraPos.y > fogTop) {\n if (wPos.y < fogTop) {\n fDeltaY = (fogTop - wPos.y) / fogRange * 2.0;\n fDensityIntegral = fDeltaY * fDeltaY * 0.5;\n }\n else {\n fDeltaY = 0.;\n fDensityIntegral = 0.;\n }\n }\n else {\n if (wPos.y < fogTop) {\n float fDeltaA = (fogTop - cameraPos.y) / fogRange * 2.;\n float fDeltaB = (fogTop - wPos.y) / fogRange * 2.;\n fDeltaY = abs(fDeltaA - fDeltaB);\n fDensityIntegral = abs((fDeltaA * fDeltaA * 0.5) - (fDeltaB * fDeltaB * 0.5));\n }\n else {\n fDeltaY = abs(fogTop - cameraPos.y) / fogRange * 2.;\n fDensityIntegral = abs(fDeltaY * fDeltaY * 0.5);\n }\n }\n float fDensity;\n if (fDeltaY != 0.) {\n fDensity = (sqrt(1.0 + ((fDeltaD / fDeltaY) * (fDeltaD / fDeltaY)))) * fDensityIntegral;\n }\n else {\n fDensity = 0.;\n }\n float f = exp(-fDensity);\n return f;\n }\n#endif\nvoid CC_TRANSFER_FOG_BASE(vec4 pos, out float factor)\n{\n#if CC_USE_FOG == 0\n\tfactor = LinearFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.y);\n#elif CC_USE_FOG == 1\n\tfactor = ExpFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n#elif CC_USE_FOG == 2\n\tfactor = ExpSquaredFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n#elif CC_USE_FOG == 3\n\tfactor = LayeredFog(pos, cc_cameraPos.xyz, cc_fogAdd.x, cc_fogAdd.y, cc_fogAdd.z);\n#else\n\tfactor = 1.0;\n#endif\n}\n#if !CC_USE_ACCURATE_FOG\nlayout(location = 0) out mediump float v_fog_factor;\n#endif\nvoid CC_TRANSFER_FOG(vec4 pos) {\n#if !CC_USE_ACCURATE_FOG\n CC_TRANSFER_FOG_BASE(pos, v_fog_factor);\n#endif\n}\nlayout(location = 1) out highp vec4 v_shadowPos;\nlayout(set = 0, binding = 2) uniform CCShadow {\n highp mat4 cc_matLightView;\n highp mat4 cc_matLightViewProj;\n highp vec4 cc_shadowInvProjDepthInfo;\n highp vec4 cc_shadowProjDepthInfo;\n highp vec4 cc_shadowProjInfo;\n mediump vec4 cc_shadowNFLSInfo;\n mediump vec4 cc_shadowWHPBInfo;\n mediump vec4 cc_shadowLPNNInfo;\n lowp vec4 cc_shadowColor;\n mediump vec4 cc_planarNDInfo;\n};\n#if CC_SUPPORT_CASCADED_SHADOW_MAP\n layout(set = 0, binding = 3) uniform CCCSM {\n highp vec4 cc_csmViewDir0[4];\n highp vec4 cc_csmViewDir1[4];\n highp vec4 cc_csmViewDir2[4];\n highp vec4 cc_csmAtlas[4];\n highp mat4 cc_matCSMViewProj[4];\n highp vec4 cc_csmProjDepthInfo[4];\n highp vec4 cc_csmProjInfo[4];\n highp vec4 cc_csmSplitsInfo;\n };\n#endif\n#if defined(CC_USE_METAL) || defined(CC_USE_WGPU)\n#define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y) y = -y\n#else\n#define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y)\n#endif\n#if CC_RECEIVE_SHADOW\n layout(set = 0, binding = 4) uniform highp sampler2D cc_shadowMap;\n layout(set = 0, binding = 6) uniform highp sampler2D cc_spotShadowMap;\n #define UnpackBitFromFloat(value, bit) (mod(floor(value / pow(10.0, float(bit))), 10.0) > 0.0)\n #if CC_SUPPORT_CASCADED_SHADOW_MAP\n #else\n #endif\n#endif\n#if CC_RECEIVE_SHADOW\n#endif\n#if CC_USE_LIGHT_PROBE\n #if USE_INSTANCING\n layout(location = 2) out mediump vec4 v_sh_linear_const_r;\n layout(location = 3) out mediump vec4 v_sh_linear_const_g;\n layout(location = 4) out mediump vec4 v_sh_linear_const_b;\n #endif\n#endif\nvoid CC_TRANSFER_SH() {\n#if CC_USE_LIGHT_PROBE\n #if USE_INSTANCING\n v_sh_linear_const_r = a_sh_linear_const_r;\n v_sh_linear_const_g = a_sh_linear_const_g;\n v_sh_linear_const_b = a_sh_linear_const_b;\n #endif\n#endif\n}\n#if USE_VERTEX_COLOR\n layout(location = 17) in vec4 a_color;\n layout(location = 5) out vec4 v_color;\n#endif\nlayout(location = 6) out vec3 v_position;\nlayout(location = 7) out vec3 v_normal;\nlayout(location = 8) out vec2 v_uv;\nlayout(location = 9) out vec2 v_uv1;\n#if USE_NORMAL_MAP\n layout(location = 10) out vec3 v_tangent;\n layout(location = 11) out vec3 v_bitangent;\n#endif\n#if HAS_SECOND_UV || CC_USE_LIGHTMAP\n layout(location = 18) in vec2 a_texCoord1;\n#endif\n#if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n layout(location = 12) out vec3 v_luv;\n void CCLightingMapCaclUV()\n {\n #if !USE_INSTANCING\n v_luv.xy = cc_lightingMapUVParam.xy + a_texCoord1 * cc_lightingMapUVParam.z;\n v_luv.z = cc_lightingMapUVParam.w;\n #else\n v_luv.xy = a_lightingMapUVParam.xy + a_texCoord1 * a_lightingMapUVParam.z;\n v_luv.z = a_lightingMapUVParam.w;\n #endif\n }\n#endif\nvoid main () {\n StandardVertInput In;\n CCVertInput(In);\n mat4 matWorld, matWorldIT;\n CCGetWorldMatrixFull(matWorld, matWorldIT);\n vec4 pos = matWorld * In.position;\n v_position = pos.xyz;\n v_normal = normalize((matWorldIT * vec4(In.normal, 0.0)).xyz);\n #if USE_NORMAL_MAP\n v_tangent = normalize((matWorld * vec4(In.tangent.xyz, 0.0)).xyz);\n v_bitangent = cross(v_normal, v_tangent) * In.tangent.w;\n #endif\n v_uv = a_texCoord * tilingOffset.xy + tilingOffset.zw;\n #if HAS_SECOND_UV\n v_uv1 = a_texCoord1 * tilingOffset.xy + tilingOffset.zw;\n #endif\n #if USE_VERTEX_COLOR\n v_color = a_color;\n #endif\n CC_TRANSFER_FOG(pos);\n v_shadowPos = cc_matLightViewProj * pos;\n CC_TRANSFER_SH();\n #if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n CCLightingMapCaclUV();\n #endif\n gl_Position = cc_matProj * (cc_matView * matWorld) * In.position;\n}", "frag": "\nprecision highp float;\nlayout(set = 0, binding = 0) uniform CCGlobal {\n highp vec4 cc_time;\n mediump vec4 cc_screenSize;\n mediump vec4 cc_nativeSize;\n mediump vec4 cc_probeInfo;\n mediump vec4 cc_debug_view_mode;\n};\nlayout(set = 0, binding = 1) uniform CCCamera {\n highp mat4 cc_matView;\n highp mat4 cc_matViewInv;\n highp mat4 cc_matProj;\n highp mat4 cc_matProjInv;\n highp mat4 cc_matViewProj;\n highp mat4 cc_matViewProjInv;\n highp vec4 cc_cameraPos;\n mediump vec4 cc_surfaceTransform;\n mediump vec4 cc_screenScale;\n mediump vec4 cc_exposure;\n mediump vec4 cc_mainLitDir;\n mediump vec4 cc_mainLitColor;\n mediump vec4 cc_ambientSky;\n mediump vec4 cc_ambientGround;\n mediump vec4 cc_fogColor;\n mediump vec4 cc_fogBase;\n mediump vec4 cc_fogAdd;\n mediump vec4 cc_nearFar;\n mediump vec4 cc_viewPort;\n};\nlayout(set = 1, binding = 0) uniform Constants {\n vec4 tilingOffset;\n vec4 albedo;\n vec4 albedoScaleAndCutoff;\n vec4 pbrParams;\n vec4 emissive;\n vec4 emissiveScaleParam;\n};\n#if CC_USE_FOG != 4\n float LinearFog(vec4 pos, vec3 cameraPos, float fogStart, float fogEnd) {\n vec4 wPos = pos;\n float cam_dis = distance(cameraPos, wPos.xyz);\n return clamp((fogEnd - cam_dis) / (fogEnd - fogStart), 0., 1.);\n }\n float ExpFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * fogDensity);\n return f;\n }\n float ExpSquaredFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * cam_dis * fogDensity * fogDensity);\n return f;\n }\n float LayeredFog(vec4 pos, vec3 cameraPos, float fogTop, float fogRange, float fogAtten) {\n vec4 wPos = pos;\n vec3 camWorldProj = cameraPos.xyz;\n camWorldProj.y = 0.;\n vec3 worldPosProj = wPos.xyz;\n worldPosProj.y = 0.;\n float fDeltaD = distance(worldPosProj, camWorldProj) / fogAtten * 2.0;\n float fDeltaY, fDensityIntegral;\n if (cameraPos.y > fogTop) {\n if (wPos.y < fogTop) {\n fDeltaY = (fogTop - wPos.y) / fogRange * 2.0;\n fDensityIntegral = fDeltaY * fDeltaY * 0.5;\n }\n else {\n fDeltaY = 0.;\n fDensityIntegral = 0.;\n }\n }\n else {\n if (wPos.y < fogTop) {\n float fDeltaA = (fogTop - cameraPos.y) / fogRange * 2.;\n float fDeltaB = (fogTop - wPos.y) / fogRange * 2.;\n fDeltaY = abs(fDeltaA - fDeltaB);\n fDensityIntegral = abs((fDeltaA * fDeltaA * 0.5) - (fDeltaB * fDeltaB * 0.5));\n }\n else {\n fDeltaY = abs(fogTop - cameraPos.y) / fogRange * 2.;\n fDensityIntegral = abs(fDeltaY * fDeltaY * 0.5);\n }\n }\n float fDensity;\n if (fDeltaY != 0.) {\n fDensity = (sqrt(1.0 + ((fDeltaD / fDeltaY) * (fDeltaD / fDeltaY)))) * fDensityIntegral;\n }\n else {\n fDensity = 0.;\n }\n float f = exp(-fDensity);\n return f;\n }\n#endif\nvoid CC_TRANSFER_FOG_BASE(vec4 pos, out float factor)\n{\n#if CC_USE_FOG == 0\n\tfactor = LinearFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.y);\n#elif CC_USE_FOG == 1\n\tfactor = ExpFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n#elif CC_USE_FOG == 2\n\tfactor = ExpSquaredFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n#elif CC_USE_FOG == 3\n\tfactor = LayeredFog(pos, cc_cameraPos.xyz, cc_fogAdd.x, cc_fogAdd.y, cc_fogAdd.z);\n#else\n\tfactor = 1.0;\n#endif\n}\nvoid CC_APPLY_FOG_BASE(inout vec4 color, float factor) {\n\tcolor = vec4(mix(cc_fogColor.rgb, color.rgb, factor), color.a);\n}\n#if !CC_USE_ACCURATE_FOG\nlayout(location = 0) in mediump float v_fog_factor;\n#endif\nvoid CC_APPLY_FOG(inout vec4 color) {\n#if !CC_USE_ACCURATE_FOG\n CC_APPLY_FOG_BASE(color, v_fog_factor);\n#endif\n}\nvoid CC_APPLY_FOG(inout vec4 color, vec3 worldPos) {\n#if CC_USE_ACCURATE_FOG\n float factor;\n CC_TRANSFER_FOG_BASE(vec4(worldPos, 1.0), factor);\n#else\n float factor = v_fog_factor;\n#endif\n CC_APPLY_FOG_BASE(color, factor);\n}\n#define QUATER_PI 0.78539816340\n#define HALF_PI 1.57079632679\n#define PI 3.14159265359\n#define PI2 6.28318530718\n#define PI4 12.5663706144\n#define INV_QUATER_PI 1.27323954474\n#define INV_HALF_PI 0.63661977237\n#define INV_PI 0.31830988618\n#define INV_PI2 0.15915494309\n#define INV_PI4 0.07957747155\n#define EPSILON 1e-6\n#define EPSILON_LOWP 1e-4\n#define LOG2 1.442695\n#define EXP_VALUE 2.71828183\n#define FP_MAX 65504.0\n#define FP_SCALE 0.0009765625\n#define FP_SCALE_INV 1024.0\n#define GRAY_VECTOR vec3(0.299, 0.587, 0.114)\n#define LIGHT_MAP_TYPE_DISABLED 0\n#define LIGHT_MAP_TYPE_ALL_IN_ONE 1\n#define LIGHT_MAP_TYPE_INDIRECT_OCCLUSION 2\n#define REFLECTION_PROBE_TYPE_NONE 0\n#define REFLECTION_PROBE_TYPE_CUBE 1\n#define REFLECTION_PROBE_TYPE_PLANAR 2\n#define REFLECTION_PROBE_TYPE_BLEND 3\n#define REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX 4\n#define LIGHT_TYPE_DIRECTIONAL 0.0\n#define LIGHT_TYPE_SPHERE 1.0\n#define LIGHT_TYPE_SPOT 2.0\n#define LIGHT_TYPE_POINT 3.0\n#define LIGHT_TYPE_RANGED_DIRECTIONAL 4.0\n#define IS_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_DIRECTIONAL)) < EPSILON_LOWP)\n#define IS_SPHERE_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPHERE)) < EPSILON_LOWP)\n#define IS_SPOT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPOT)) < EPSILON_LOWP)\n#define IS_POINT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_POINT)) < EPSILON_LOWP)\n#define IS_RANGED_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_RANGED_DIRECTIONAL)) < EPSILON_LOWP)\n#define TONE_MAPPING_ACES 0\n#define TONE_MAPPING_LINEAR 1\n#define SURFACES_MAX_TRANSMIT_DEPTH_VALUE 999999.0\n#ifndef CC_SURFACES_DEBUG_VIEW_SINGLE\n #define CC_SURFACES_DEBUG_VIEW_SINGLE 1\n#endif\n#ifndef CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC\n #define CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC 2\n#endif\nvec3 SRGBToLinear (vec3 gamma) {\n#ifdef CC_USE_SURFACE_SHADER\n #if CC_USE_DEBUG_VIEW == CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC && CC_SURFACES_ENABLE_DEBUG_VIEW\n if (!IS_DEBUG_VIEW_COMPOSITE_ENABLE_GAMMA_CORRECTION) {\n return gamma;\n }\n #endif\n#endif\n return gamma * gamma;\n}\nvec3 LinearToSRGB(vec3 linear) {\n#ifdef CC_USE_SURFACE_SHADER\n #if CC_USE_DEBUG_VIEW == CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC && CC_SURFACES_ENABLE_DEBUG_VIEW\n if (!IS_DEBUG_VIEW_COMPOSITE_ENABLE_GAMMA_CORRECTION) {\n return linear;\n }\n #endif\n#endif\n return sqrt(linear);\n}\nlayout(set = 0, binding = 2) uniform CCShadow {\n highp mat4 cc_matLightView;\n highp mat4 cc_matLightViewProj;\n highp vec4 cc_shadowInvProjDepthInfo;\n highp vec4 cc_shadowProjDepthInfo;\n highp vec4 cc_shadowProjInfo;\n mediump vec4 cc_shadowNFLSInfo;\n mediump vec4 cc_shadowWHPBInfo;\n mediump vec4 cc_shadowLPNNInfo;\n lowp vec4 cc_shadowColor;\n mediump vec4 cc_planarNDInfo;\n};\n#if CC_SUPPORT_CASCADED_SHADOW_MAP\n layout(set = 0, binding = 3) uniform CCCSM {\n highp vec4 cc_csmViewDir0[4];\n highp vec4 cc_csmViewDir1[4];\n highp vec4 cc_csmViewDir2[4];\n highp vec4 cc_csmAtlas[4];\n highp mat4 cc_matCSMViewProj[4];\n highp vec4 cc_csmProjDepthInfo[4];\n highp vec4 cc_csmProjInfo[4];\n highp vec4 cc_csmSplitsInfo;\n };\n#endif\n#if defined(CC_USE_METAL) || defined(CC_USE_WGPU)\n#define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y) y = -y\n#else\n#define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y)\n#endif\nvec2 GetPlanarReflectScreenUV(vec3 worldPos, mat4 matVirtualCameraViewProj, float flipNDCSign, vec3 viewDir, vec3 reflectDir)\n{\n vec4 clipPos = matVirtualCameraViewProj * vec4(worldPos, 1.0);\n vec2 screenUV = clipPos.xy / clipPos.w * 0.5 + 0.5;\n screenUV = vec2(1.0 - screenUV.x, screenUV.y);\n screenUV = flipNDCSign == 1.0 ? vec2(screenUV.x, 1.0 - screenUV.y) : screenUV;\n return screenUV;\n}\nvec3 RotationVecFromAxisY(vec3 v, float cosTheta, float sinTheta)\n{\n vec3 result;\n result.x = dot(v, vec3(cosTheta, 0.0, -sinTheta));\n result.y = v.y;\n result.z = dot(v, vec3(sinTheta, 0.0, cosTheta));\n return result;\n}\nvec3 RotationVecFromAxisY(vec3 v, float rotateAngleArc)\n{\n return RotationVecFromAxisY(v, cos(rotateAngleArc), sin(rotateAngleArc));\n}\n#if CC_RECEIVE_SHADOW\n layout(set = 0, binding = 4) uniform highp sampler2D cc_shadowMap;\n layout(set = 0, binding = 6) uniform highp sampler2D cc_spotShadowMap;\n #define UnpackBitFromFloat(value, bit) (mod(floor(value / pow(10.0, float(bit))), 10.0) > 0.0)\n highp float unpackHighpData (float mainPart, float modPart) {\n highp float data = mainPart;\n return data + modPart;\n }\n void packHighpData (out float mainPart, out float modPart, highp float data) {\n mainPart = fract(data);\n modPart = data - mainPart;\n }\n highp float unpackHighpData (float mainPart, float modPart, const float modValue) {\n highp float data = mainPart * modValue;\n return data + modPart * modValue;\n }\n void packHighpData (out float mainPart, out float modPart, highp float data, const float modValue) {\n highp float divide = data / modValue;\n mainPart = floor(divide);\n modPart = (data - mainPart * modValue) / modValue;\n }\n highp vec2 unpackHighpData (vec2 mainPart, vec2 modPart) {\n highp vec2 data = mainPart;\n return data + modPart;\n }\n void packHighpData (out vec2 mainPart, out vec2 modPart, highp vec2 data) {\n mainPart = fract(data);\n modPart = data - mainPart;\n }\n highp vec2 unpackHighpData (vec2 mainPart, vec2 modPart, const float modValue) {\n highp vec2 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n void packHighpData (out vec2 mainPart, out vec2 modPart, highp vec2 data, const float modValue) {\n highp vec2 divide = data / modValue;\n mainPart = floor(divide);\n modPart = (data - mainPart * modValue) / modValue;\n }\n highp vec3 unpackHighpData (vec3 mainPart, vec3 modPart) {\n highp vec3 data = mainPart;\n return data + modPart;\n }\n void packHighpData (out vec3 mainPart, out vec3 modPart, highp vec3 data) {\n mainPart = fract(data);\n modPart = data - mainPart;\n }\n highp vec3 unpackHighpData (vec3 mainPart, vec3 modPart, const float modValue) {\n highp vec3 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n void packHighpData (out vec3 mainPart, out vec3 modPart, highp vec3 data, const float modValue) {\n highp vec3 divide = data / modValue;\n mainPart = floor(divide);\n modPart = (data - mainPart * modValue) / modValue;\n }\n highp vec4 unpackHighpData (vec4 mainPart, vec4 modPart) {\n highp vec4 data = mainPart;\n return data + modPart;\n }\n void packHighpData (out vec4 mainPart, out vec4 modPart, highp vec4 data) {\n mainPart = fract(data);\n modPart = data - mainPart;\n }\n highp vec4 unpackHighpData (vec4 mainPart, vec4 modPart, const float modValue) {\n highp vec4 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n void packHighpData (out vec4 mainPart, out vec4 modPart, highp vec4 data, const float modValue) {\n highp vec4 divide = data / modValue;\n mainPart = floor(divide);\n modPart = (data - mainPart * modValue) / modValue;\n }\n float NativePCFShadowFactorHard (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n #if CC_SHADOWMAP_FORMAT == 1\n return step(shadowNDCPos.z, dot(texture(shadowMap, shadowNDCPos.xy), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n return step(shadowNDCPos.z, texture(shadowMap, shadowNDCPos.xy).x);\n #endif\n }\n float NativePCFShadowFactorSoft (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n vec2 shadowNDCPos_offset = shadowNDCPos.xy + oneTap;\n float block0, block1, block2, block3;\n #if CC_SHADOWMAP_FORMAT == 1\n block0 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block1 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos_offset.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block0 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)).x);\n block1 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos.y)).x);\n block2 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset.y)).x);\n block3 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos_offset.y)).x);\n #endif\n float coefX = mod(shadowNDCPos.x, oneTap.x) * shadowMapResolution.x;\n float resultX = mix(block0, block1, coefX);\n float resultY = mix(block2, block3, coefX);\n float coefY = mod(shadowNDCPos.y, oneTap.y) * shadowMapResolution.y;\n return mix(resultX, resultY, coefY);\n }\n float NativePCFShadowFactorSoft3X (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n float shadowNDCPos_offset_L = shadowNDCPos.x - oneTap.x;\n float shadowNDCPos_offset_R = shadowNDCPos.x + oneTap.x;\n float shadowNDCPos_offset_U = shadowNDCPos.y - oneTap.y;\n float shadowNDCPos_offset_D = shadowNDCPos.y + oneTap.y;\n float block0, block1, block2, block3, block4, block5, block6, block7, block8;\n #if CC_SHADOWMAP_FORMAT == 1\n block0 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block1 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block4 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block5 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block6 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block7 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block8 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block0 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_U)).x);\n block1 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_U)).x);\n block2 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_U)).x);\n block3 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos.y)).x);\n block4 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)).x);\n block5 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos.y)).x);\n block6 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_D)).x);\n block7 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_D)).x);\n block8 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_D)).x);\n #endif\n float coefX = mod(shadowNDCPos.x, oneTap.x) * shadowMapResolution.x;\n float coefY = mod(shadowNDCPos.y, oneTap.y) * shadowMapResolution.y;\n float shadow = 0.0;\n float resultX = mix(block0, block1, coefX);\n float resultY = mix(block3, block4, coefX);\n shadow += mix(resultX , resultY, coefY);\n resultX = mix(block1, block2, coefX);\n resultY = mix(block4, block5, coefX);\n shadow += mix(resultX , resultY, coefY);\n resultX = mix(block3, block4, coefX);\n resultY = mix(block6, block7, coefX);\n shadow += mix(resultX, resultY, coefY);\n resultX = mix(block4, block5, coefX);\n resultY = mix(block7, block8, coefX);\n shadow += mix(resultX, resultY, coefY);\n return shadow * 0.25;\n }\n float NativePCFShadowFactorSoft5X (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n vec2 twoTap = oneTap * 2.0;\n vec2 offset1 = shadowNDCPos.xy + vec2(-twoTap.x, -twoTap.y);\n vec2 offset2 = shadowNDCPos.xy + vec2(-oneTap.x, -twoTap.y);\n vec2 offset3 = shadowNDCPos.xy + vec2(0.0, -twoTap.y);\n vec2 offset4 = shadowNDCPos.xy + vec2(oneTap.x, -twoTap.y);\n vec2 offset5 = shadowNDCPos.xy + vec2(twoTap.x, -twoTap.y);\n vec2 offset6 = shadowNDCPos.xy + vec2(-twoTap.x, -oneTap.y);\n vec2 offset7 = shadowNDCPos.xy + vec2(-oneTap.x, -oneTap.y);\n vec2 offset8 = shadowNDCPos.xy + vec2(0.0, -oneTap.y);\n vec2 offset9 = shadowNDCPos.xy + vec2(oneTap.x, -oneTap.y);\n vec2 offset10 = shadowNDCPos.xy + vec2(twoTap.x, -oneTap.y);\n vec2 offset11 = shadowNDCPos.xy + vec2(-twoTap.x, 0.0);\n vec2 offset12 = shadowNDCPos.xy + vec2(-oneTap.x, 0.0);\n vec2 offset13 = shadowNDCPos.xy + vec2(0.0, 0.0);\n vec2 offset14 = shadowNDCPos.xy + vec2(oneTap.x, 0.0);\n vec2 offset15 = shadowNDCPos.xy + vec2(twoTap.x, 0.0);\n vec2 offset16 = shadowNDCPos.xy + vec2(-twoTap.x, oneTap.y);\n vec2 offset17 = shadowNDCPos.xy + vec2(-oneTap.x, oneTap.y);\n vec2 offset18 = shadowNDCPos.xy + vec2(0.0, oneTap.y);\n vec2 offset19 = shadowNDCPos.xy + vec2(oneTap.x, oneTap.y);\n vec2 offset20 = shadowNDCPos.xy + vec2(twoTap.x, oneTap.y);\n vec2 offset21 = shadowNDCPos.xy + vec2(-twoTap.x, twoTap.y);\n vec2 offset22 = shadowNDCPos.xy + vec2(-oneTap.x, twoTap.y);\n vec2 offset23 = shadowNDCPos.xy + vec2(0.0, twoTap.y);\n vec2 offset24 = shadowNDCPos.xy + vec2(oneTap.x, twoTap.y);\n vec2 offset25 = shadowNDCPos.xy + vec2(twoTap.x, twoTap.y);\n float block1, block2, block3, block4, block5, block6, block7, block8, block9, block10, block11, block12, block13, block14, block15, block16, block17, block18, block19, block20, block21, block22, block23, block24, block25;\n #if CC_SHADOWMAP_FORMAT == 1\n block1 = step(shadowNDCPos.z, dot(texture(shadowMap, offset1), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture(shadowMap, offset2), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture(shadowMap, offset3), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block4 = step(shadowNDCPos.z, dot(texture(shadowMap, offset4), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block5 = step(shadowNDCPos.z, dot(texture(shadowMap, offset5), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block6 = step(shadowNDCPos.z, dot(texture(shadowMap, offset6), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block7 = step(shadowNDCPos.z, dot(texture(shadowMap, offset7), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block8 = step(shadowNDCPos.z, dot(texture(shadowMap, offset8), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block9 = step(shadowNDCPos.z, dot(texture(shadowMap, offset9), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block10 = step(shadowNDCPos.z, dot(texture(shadowMap, offset10), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block11 = step(shadowNDCPos.z, dot(texture(shadowMap, offset11), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block12 = step(shadowNDCPos.z, dot(texture(shadowMap, offset12), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block13 = step(shadowNDCPos.z, dot(texture(shadowMap, offset13), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block14 = step(shadowNDCPos.z, dot(texture(shadowMap, offset14), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block15 = step(shadowNDCPos.z, dot(texture(shadowMap, offset15), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block16 = step(shadowNDCPos.z, dot(texture(shadowMap, offset16), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block17 = step(shadowNDCPos.z, dot(texture(shadowMap, offset17), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block18 = step(shadowNDCPos.z, dot(texture(shadowMap, offset18), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block19 = step(shadowNDCPos.z, dot(texture(shadowMap, offset19), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block20 = step(shadowNDCPos.z, dot(texture(shadowMap, offset20), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block21 = step(shadowNDCPos.z, dot(texture(shadowMap, offset21), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block22 = step(shadowNDCPos.z, dot(texture(shadowMap, offset22), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block23 = step(shadowNDCPos.z, dot(texture(shadowMap, offset23), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block24 = step(shadowNDCPos.z, dot(texture(shadowMap, offset24), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block25 = step(shadowNDCPos.z, dot(texture(shadowMap, offset25), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block1 = step(shadowNDCPos.z, texture(shadowMap, offset1).x);\n block2 = step(shadowNDCPos.z, texture(shadowMap, offset2).x);\n block3 = step(shadowNDCPos.z, texture(shadowMap, offset3).x);\n block4 = step(shadowNDCPos.z, texture(shadowMap, offset4).x);\n block5 = step(shadowNDCPos.z, texture(shadowMap, offset5).x);\n block6 = step(shadowNDCPos.z, texture(shadowMap, offset6).x);\n block7 = step(shadowNDCPos.z, texture(shadowMap, offset7).x);\n block8 = step(shadowNDCPos.z, texture(shadowMap, offset8).x);\n block9 = step(shadowNDCPos.z, texture(shadowMap, offset9).x);\n block10 = step(shadowNDCPos.z, texture(shadowMap, offset10).x);\n block11 = step(shadowNDCPos.z, texture(shadowMap, offset11).x);\n block12 = step(shadowNDCPos.z, texture(shadowMap, offset12).x);\n block13 = step(shadowNDCPos.z, texture(shadowMap, offset13).x);\n block14 = step(shadowNDCPos.z, texture(shadowMap, offset14).x);\n block15 = step(shadowNDCPos.z, texture(shadowMap, offset15).x);\n block16 = step(shadowNDCPos.z, texture(shadowMap, offset16).x);\n block17 = step(shadowNDCPos.z, texture(shadowMap, offset17).x);\n block18 = step(shadowNDCPos.z, texture(shadowMap, offset18).x);\n block19 = step(shadowNDCPos.z, texture(shadowMap, offset19).x);\n block20 = step(shadowNDCPos.z, texture(shadowMap, offset20).x);\n block21 = step(shadowNDCPos.z, texture(shadowMap, offset21).x);\n block22 = step(shadowNDCPos.z, texture(shadowMap, offset22).x);\n block23 = step(shadowNDCPos.z, texture(shadowMap, offset23).x);\n block24 = step(shadowNDCPos.z, texture(shadowMap, offset24).x);\n block25 = step(shadowNDCPos.z, texture(shadowMap, offset25).x);\n #endif\n vec2 coef = fract(shadowNDCPos.xy * shadowMapResolution);\n vec2 v1X1 = mix(vec2(block1, block6), vec2(block2, block7), coef.xx);\n vec2 v1X2 = mix(vec2(block2, block7), vec2(block3, block8), coef.xx);\n vec2 v1X3 = mix(vec2(block3, block8), vec2(block4, block9), coef.xx);\n vec2 v1X4 = mix(vec2(block4, block9), vec2(block5, block10), coef.xx);\n float v1 = mix(v1X1.x, v1X1.y, coef.y) + mix(v1X2.x, v1X2.y, coef.y) + mix(v1X3.x, v1X3.y, coef.y) + mix(v1X4.x, v1X4.y, coef.y);\n vec2 v2X1 = mix(vec2(block6, block11), vec2(block7, block12), coef.xx);\n vec2 v2X2 = mix(vec2(block7, block12), vec2(block8, block13), coef.xx);\n vec2 v2X3 = mix(vec2(block8, block13), vec2(block9, block14), coef.xx);\n vec2 v2X4 = mix(vec2(block9, block14), vec2(block10, block15), coef.xx);\n float v2 = mix(v2X1.x, v2X1.y, coef.y) + mix(v2X2.x, v2X2.y, coef.y) + mix(v2X3.x, v2X3.y, coef.y) + mix(v2X4.x, v2X4.y, coef.y);\n vec2 v3X1 = mix(vec2(block11, block16), vec2(block12, block17), coef.xx);\n vec2 v3X2 = mix(vec2(block12, block17), vec2(block13, block18), coef.xx);\n vec2 v3X3 = mix(vec2(block13, block18), vec2(block14, block19), coef.xx);\n vec2 v3X4 = mix(vec2(block14, block19), vec2(block15, block20), coef.xx);\n float v3 = mix(v3X1.x, v3X1.y, coef.y) + mix(v3X2.x, v3X2.y, coef.y) + mix(v3X3.x, v3X3.y, coef.y) + mix(v3X4.x, v3X4.y, coef.y);\n vec2 v4X1 = mix(vec2(block16, block21), vec2(block17, block22), coef.xx);\n vec2 v4X2 = mix(vec2(block17, block22), vec2(block18, block23), coef.xx);\n vec2 v4X3 = mix(vec2(block18, block23), vec2(block19, block24), coef.xx);\n vec2 v4X4 = mix(vec2(block19, block24), vec2(block20, block25), coef.xx);\n float v4 = mix(v4X1.x, v4X1.y, coef.y) + mix(v4X2.x, v4X2.y, coef.y) + mix(v4X3.x, v4X3.y, coef.y) + mix(v4X4.x, v4X4.y, coef.y);\n float fAvg = (v1 + v2 + v3 + v4) * 0.0625;\n return fAvg;\n }\n bool GetShadowNDCPos(out vec3 shadowNDCPos, vec4 shadowPosWithDepthBias)\n {\n \tshadowNDCPos = shadowPosWithDepthBias.xyz / shadowPosWithDepthBias.w * 0.5 + 0.5;\n \tif (shadowNDCPos.x < 0.0 || shadowNDCPos.x > 1.0 ||\n \t\tshadowNDCPos.y < 0.0 || shadowNDCPos.y > 1.0 ||\n \t\tshadowNDCPos.z < 0.0 || shadowNDCPos.z > 1.0) {\n \t\treturn false;\n \t}\n \tshadowNDCPos.xy = cc_cameraPos.w == 1.0 ? vec2(shadowNDCPos.xy.x, 1.0 - shadowNDCPos.xy.y) : shadowNDCPos.xy;\n \treturn true;\n }\n vec4 ApplyShadowDepthBias_FaceNormal(vec4 shadowPos, vec3 worldNormal, float normalBias, vec3 matViewDir0, vec3 matViewDir1, vec3 matViewDir2, vec2 projScaleXY)\n {\n vec4 newShadowPos = shadowPos;\n if (normalBias > EPSILON_LOWP)\n {\n vec3 viewNormal = vec3(dot(matViewDir0, worldNormal), dot(matViewDir1, worldNormal), dot(matViewDir2, worldNormal));\n if (viewNormal.z < 0.1)\n newShadowPos.xy += viewNormal.xy * projScaleXY * normalBias * clamp(viewNormal.z, 0.001, 0.1);\n }\n return newShadowPos;\n }\n vec4 ApplyShadowDepthBias_FaceNormal(vec4 shadowPos, vec3 worldNormal, float normalBias, mat4 matLightView, vec2 projScaleXY)\n {\n \tvec4 newShadowPos = shadowPos;\n \tif (normalBias > EPSILON_LOWP)\n \t{\n \t\tvec4 viewNormal = matLightView * vec4(worldNormal, 0.0);\n \t\tif (viewNormal.z < 0.1)\n \t\t\tnewShadowPos.xy += viewNormal.xy * projScaleXY * normalBias * clamp(viewNormal.z, 0.001, 0.1);\n \t}\n \treturn newShadowPos;\n }\n float GetViewSpaceDepthFromNDCDepth_Orthgraphic(float NDCDepth, float projScaleZ, float projBiasZ)\n {\n \treturn (NDCDepth - projBiasZ) / projScaleZ;\n }\n vec4 ApplyShadowDepthBias_Orthographic(vec4 shadowPos, float viewspaceDepthBias, float projScaleZ, float projBiasZ)\n {\n \tfloat coeffA = projScaleZ;\n \tfloat coeffB = projBiasZ;\n \tfloat viewSpacePos_z = GetViewSpaceDepthFromNDCDepth_Orthgraphic(shadowPos.z, projScaleZ, projBiasZ);\n \tviewSpacePos_z += viewspaceDepthBias;\n \tvec4 result = shadowPos;\n \tresult.z = viewSpacePos_z * coeffA + coeffB;\n \treturn result;\n }\n float CCGetDirLightShadowFactorHard (vec4 shadowPosWithDepthBias) {\n\t vec3 shadowNDCPos;\n\t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n\t\t return 1.0;\n\t }\n return NativePCFShadowFactorHard(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft (vec4 shadowPosWithDepthBias) {\n\t vec3 shadowNDCPos;\n\t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n\t\t return 1.0;\n\t }\n return NativePCFShadowFactorSoft(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft3X (vec4 shadowPosWithDepthBias) {\n\t vec3 shadowNDCPos;\n\t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n\t\t return 1.0;\n\t }\n return NativePCFShadowFactorSoft3X(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft5X (vec4 shadowPosWithDepthBias) {\n\t vec3 shadowNDCPos;\n\t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n\t\t return 1.0;\n\t }\n return NativePCFShadowFactorSoft5X(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCShadowFactorBase(out vec4 shadowPosWithDepthBias, vec4 shadowPos, vec3 N, vec2 shadowBias)\n {\n vec4 pos = ApplyShadowDepthBias_FaceNormal(shadowPos, N, shadowBias.y, cc_matLightView, cc_shadowProjInfo.xy);\n pos = ApplyShadowDepthBias_Orthographic(pos, shadowBias.x, cc_shadowProjDepthInfo.x, cc_shadowProjDepthInfo.y);\n float realtimeShadow = 1.0;\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n realtimeShadow = CCGetDirLightShadowFactorSoft5X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n realtimeShadow = CCGetDirLightShadowFactorSoft3X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n realtimeShadow = CCGetDirLightShadowFactorSoft(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n realtimeShadow = CCGetDirLightShadowFactorHard(pos);\n #endif\n shadowPosWithDepthBias = pos;\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n }\n #if CC_SUPPORT_CASCADED_SHADOW_MAP\n bool CCGetCSMLevelWithTransition(out highp float ratio, vec3 clipPos) {\n highp float maxRange = 1.0 - cc_csmSplitsInfo.x;\n highp float minRange = cc_csmSplitsInfo.x;\n highp float thresholdInvert = 1.0 / cc_csmSplitsInfo.x;\n ratio = 0.0;\n if (clipPos.x <= minRange) {\n ratio = clipPos.x * thresholdInvert;\n return true;\n }\n if (clipPos.x >= maxRange) {\n ratio = 1.0 - (clipPos.x - maxRange) * thresholdInvert;\n return true;\n }\n if (clipPos.y <= minRange) {\n ratio = clipPos.y * thresholdInvert;\n return true;\n }\n if (clipPos.y >= maxRange) {\n ratio = 1.0 - (clipPos.y - maxRange) * thresholdInvert;\n return true;\n }\n return false;\n }\n bool CCHasCSMLevel(int level, vec3 worldPos) {\n highp float layerThreshold = cc_csmViewDir0[0].w;\n bool hasLevel = false;\n for (int i = 0; i < 4; i++) {\n if (i == level) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0) {\n hasLevel = true;\n }\n }\n }\n return hasLevel;\n }\n void CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos, int level) {\n highp float layerThreshold = cc_csmViewDir0[0].w;\n for (int i = 0; i < 4; i++) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0 && i == level) {\n csmPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n csmPos.xy = csmPos.xy * cc_csmAtlas[i].xy + cc_csmAtlas[i].zw;\n shadowProjDepthInfo = cc_csmProjDepthInfo[i];\n shadowProjInfo = cc_csmProjInfo[i];\n shadowViewDir0 = cc_csmViewDir0[i].xyz;\n shadowViewDir1 = cc_csmViewDir1[i].xyz;\n shadowViewDir2 = cc_csmViewDir2[i].xyz;\n }\n }\n }\n int CCGetCSMLevel(out bool isTransitionArea, out highp float transitionRatio, out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos)\n {\n int level = -1;\n highp float layerThreshold = cc_csmViewDir0[0].w;\n for (int i = 0; i < 4; i++) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0 && level < 0) {\n #if CC_CASCADED_LAYERS_TRANSITION\n isTransitionArea = CCGetCSMLevelWithTransition(transitionRatio, clipPos);\n #endif\n csmPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n csmPos.xy = csmPos.xy * cc_csmAtlas[i].xy + cc_csmAtlas[i].zw;\n shadowProjDepthInfo = cc_csmProjDepthInfo[i];\n shadowProjInfo = cc_csmProjInfo[i];\n shadowViewDir0 = cc_csmViewDir0[i].xyz;\n shadowViewDir1 = cc_csmViewDir1[i].xyz;\n shadowViewDir2 = cc_csmViewDir2[i].xyz;\n level = i;\n }\n }\n return level;\n }\n int CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos)\n {\n bool isTransitionArea = false;\n highp float transitionRatio = 0.0;\n return CCGetCSMLevel(isTransitionArea, transitionRatio, csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n }\n float CCCSMFactorBase(out vec4 csmPos, out vec4 csmPosWithBias, vec3 worldPos, vec3 N, vec2 shadowBias)\n {\n bool isTransitionArea = false;\n highp float ratio = 0.0;\n csmPos = vec4(1.0);\n vec4 shadowProjDepthInfo, shadowProjInfo;\n vec3 shadowViewDir0, shadowViewDir1, shadowViewDir2;\n int level = -1;\n #if CC_CASCADED_LAYERS_TRANSITION\n level = CCGetCSMLevel(isTransitionArea, ratio, csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n #else\n level = CCGetCSMLevel(csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n #endif\n if (level < 0) { return 1.0; }\n vec4 pos = ApplyShadowDepthBias_FaceNormal(csmPos, N, shadowBias.y, shadowViewDir0, shadowViewDir1, shadowViewDir2, shadowProjInfo.xy);\n pos = ApplyShadowDepthBias_Orthographic(pos, shadowBias.x, shadowProjDepthInfo.x, shadowProjDepthInfo.y);\n csmPosWithBias = pos;\n float realtimeShadow = 1.0;\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n realtimeShadow = CCGetDirLightShadowFactorSoft5X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n realtimeShadow = CCGetDirLightShadowFactorSoft3X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n realtimeShadow = CCGetDirLightShadowFactorSoft(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n realtimeShadow = CCGetDirLightShadowFactorHard(pos);\n #endif\n #if CC_CASCADED_LAYERS_TRANSITION\n vec4 nextCSMPos = vec4(1.0);\n vec4 nextShadowProjDepthInfo, nextShadowProjInfo;\n vec3 nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2;\n float nextRealtimeShadow = 1.0;\n CCGetCSMLevel(nextCSMPos, nextShadowProjDepthInfo, nextShadowProjInfo, nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2, worldPos, level + 1);\n bool hasNextLevel = CCHasCSMLevel(level + 1, worldPos);\n if (hasNextLevel && isTransitionArea) {\n vec4 nexPos = ApplyShadowDepthBias_FaceNormal(nextCSMPos, N, shadowBias.y, nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2, nextShadowProjInfo.xy);\n nexPos = ApplyShadowDepthBias_Orthographic(nexPos, shadowBias.x, nextShadowProjDepthInfo.x, nextShadowProjDepthInfo.y);\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft5X(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft3X(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n nextRealtimeShadow = CCGetDirLightShadowFactorHard(nexPos);\n #endif\n return mix(mix(nextRealtimeShadow, realtimeShadow, ratio), 1.0, cc_shadowNFLSInfo.w);\n }\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n #else\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n #endif\n }\n #else\n int CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos) {\n return -1;\n }\n float CCCSMFactorBase(out vec4 csmPos, out vec4 csmPosWithBias, vec3 worldPos, vec3 N, vec2 shadowBias) {\n csmPos = cc_matLightViewProj * vec4(worldPos, 1.0);\n return CCShadowFactorBase(csmPosWithBias, csmPos, N, shadowBias);\n }\n #endif\n float CCShadowFactorBase(vec4 shadowPos, vec3 N, vec2 shadowBias) {\n vec4 shadowPosWithDepthBias;\n return CCShadowFactorBase(shadowPosWithDepthBias, shadowPos, N, shadowBias);\n }\n float CCCSMFactorBase(vec3 worldPos, vec3 N, vec2 shadowBias) {\n vec4 csmPos, csmPosWithBias;\n return CCCSMFactorBase(csmPos, csmPosWithBias, worldPos, N, shadowBias);\n }\n#endif\nhighp float decode32 (highp vec4 rgba) {\n rgba = rgba * 255.0;\n highp float Sign = 1.0 - (step(128.0, (rgba[3]) + 0.5)) * 2.0;\n highp float Exponent = 2.0 * (mod(float(int((rgba[3]) + 0.5)), 128.0)) + (step(128.0, (rgba[2]) + 0.5)) - 127.0;\n highp float Mantissa = (mod(float(int((rgba[2]) + 0.5)), 128.0)) * 65536.0 + rgba[1] * 256.0 + rgba[0] + 8388608.0;\n return Sign * exp2(Exponent - 23.0) * Mantissa;\n}\nvec4 packRGBE (vec3 rgb) {\n highp float maxComp = max(max(rgb.r, rgb.g), rgb.b);\n highp float e = 128.0;\n if (maxComp > 0.0001) {\n e = log(maxComp) / log(1.1);\n e = ceil(e);\n e = clamp(e + 128.0, 0.0, 255.0);\n }\n highp float sc = 1.0 / pow(1.1, e - 128.0);\n vec3 encode = clamp(rgb * sc, vec3(0.0), vec3(1.0)) * 255.0;\n vec3 encode_rounded = floor(encode) + step(encode - floor(encode), vec3(0.5));\n return vec4(encode_rounded, e) / 255.0;\n}\nvec3 unpackRGBE (vec4 rgbe) {\n return rgbe.rgb * pow(1.1, rgbe.a * 255.0 - 128.0);\n}\nvec4 fragTextureLod (sampler2D tex, vec2 coord, float lod) {\n return textureLod(tex, coord, lod);\n}\nvec4 fragTextureLod (samplerCube tex, vec3 coord, float lod) {\n return textureLod(tex, coord, lod);\n}\nlayout(set = 0, binding = 5) uniform samplerCube cc_environment;\nvec3 CalculateReflectDirection(vec3 N, vec3 V, float NoV)\n{\n float sideSign = NoV < 0.0 ? -1.0 : 1.0;\n N *= sideSign;\n return reflect(-V, N);\n}\nvec3 CalculatePlanarReflectPositionOnPlane(vec3 N, vec3 V, vec3 worldPos, vec4 plane, vec3 cameraPos, float probeReflectedDepth)\n{\n float distPixelToPlane = -dot(plane, vec4(worldPos, 1.0));\n plane.w += distPixelToPlane;\n float distCameraToPlane = abs(-dot(plane, vec4(cameraPos, 1.0)));\n vec3 planeN = plane.xyz;\n vec3 virtualCameraPos = cameraPos - 2.0 * distCameraToPlane * planeN;\n vec3 bumpedR = normalize(reflect(-V, N));\n vec3 reflectedPointPos = worldPos + probeReflectedDepth * bumpedR;\n vec3 virtualCameraToReflectedPoint = normalize(reflectedPointPos - virtualCameraPos);\n float y = distCameraToPlane / max(EPSILON_LOWP, dot(planeN, virtualCameraToReflectedPoint));\n return virtualCameraPos + y * virtualCameraToReflectedPoint;\n}\nvec4 CalculateBoxProjectedDirection(vec3 R, vec3 worldPos, vec3 cubeCenterPos, vec3 cubeBoxHalfSize)\n{\n vec3 W = worldPos - cubeCenterPos;\n vec3 projectedLength = (sign(R) * cubeBoxHalfSize - W) / (R + vec3(EPSILON));\n float len = min(min(projectedLength.x, projectedLength.y), projectedLength.z);\n vec3 P = W + len * R;\n float weight = len < 0.0 ? 0.0 : 1.0;\n return vec4(P, weight);\n}\n#if CC_USE_IBL\n #if CC_USE_DIFFUSEMAP\n layout(set = 0, binding = 7) uniform samplerCube cc_diffuseMap;\n #endif\n#endif\n#if CC_USE_REFLECTION_PROBE\n layout(set = 2, binding = 15) uniform samplerCube cc_reflectionProbeCubemap;\n layout(set = 2, binding = 16) uniform sampler2D cc_reflectionProbePlanarMap;\n layout(set = 2, binding = 17) uniform sampler2D cc_reflectionProbeDataMap;\n layout(set = 2, binding = 18) uniform samplerCube cc_reflectionProbeBlendCubemap;\n layout(set = 2, binding = 0) uniform CCLocal {\n highp mat4 cc_matWorld;\n highp mat4 cc_matWorldIT;\n highp vec4 cc_lightingMapUVParam;\n highp vec4 cc_localShadowBias;\n highp vec4 cc_reflectionProbeData1;\n highp vec4 cc_reflectionProbeData2;\n highp vec4 cc_reflectionProbeBlendData1;\n highp vec4 cc_reflectionProbeBlendData2;\n };\n vec4 GetTexData(sampler2D dataMap, float dataMapWidth, float x, float uv_y)\n {\n return vec4(\n decode32(texture(dataMap, vec2(((x + 0.5)/dataMapWidth), uv_y))),\n decode32(texture(dataMap, vec2(((x + 1.5)/dataMapWidth), uv_y))),\n decode32(texture(dataMap, vec2(((x + 2.5)/dataMapWidth), uv_y))),\n decode32(texture(dataMap, vec2(((x + 3.5)/dataMapWidth), uv_y)))\n );\n }\n void GetPlanarReflectionProbeData(out vec4 plane, out float planarReflectionDepthScale, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n plane.xyz = texData1.xyz;\n plane.w = texData2.x;\n planarReflectionDepthScale = texData2.y;\n mipCount = texData2.z;\n #else\n plane = cc_reflectionProbeData1;\n planarReflectionDepthScale = cc_reflectionProbeData2.x;\n mipCount = cc_reflectionProbeData2.w;\n #endif\n }\n void GetCubeReflectionProbeData(out vec3 centerPos, out vec3 boxHalfSize, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n centerPos = texData1.xyz;\n boxHalfSize = texData2.xyz;\n mipCount = texData3.x;\n #else\n centerPos = cc_reflectionProbeData1.xyz;\n boxHalfSize = cc_reflectionProbeData2.xyz;\n mipCount = cc_reflectionProbeData2.w;\n #endif\n if (mipCount > 1000.0) mipCount -= 1000.0;\n }\n bool isReflectProbeUsingRGBE(float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n return texData3.x > 1000.0;\n #else\n return cc_reflectionProbeData2.w > 1000.0;\n #endif\n }\n bool isBlendReflectProbeUsingRGBE(float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n return texData3.x > 1000.0;\n #else\n return cc_reflectionProbeBlendData2.w > 1000.0;\n #endif\n }\n void GetBlendCubeReflectionProbeData(out vec3 centerPos, out vec3 boxHalfSize, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n centerPos = texData1.xyz;\n boxHalfSize = texData2.xyz;\n mipCount = texData3.x;\n #else\n centerPos = cc_reflectionProbeBlendData1.xyz;\n boxHalfSize = cc_reflectionProbeBlendData2.xyz;\n mipCount = cc_reflectionProbeBlendData2.w;\n #endif\n if (mipCount > 1000.0) mipCount -= 1000.0;\n }\n#endif\n#if CC_USE_LIGHT_PROBE\n#if CC_USE_LIGHT_PROBE\n #if USE_INSTANCING\n layout(location = 2) in mediump vec4 v_sh_linear_const_r;\n layout(location = 3) in mediump vec4 v_sh_linear_const_g;\n layout(location = 4) in mediump vec4 v_sh_linear_const_b;\n #else\n layout(set = 2, binding = 6) uniform CCSH {\n vec4 cc_sh_linear_const_r;\n vec4 cc_sh_linear_const_g;\n vec4 cc_sh_linear_const_b;\n vec4 cc_sh_quadratic_r;\n vec4 cc_sh_quadratic_g;\n vec4 cc_sh_quadratic_b;\n vec4 cc_sh_quadratic_a;\n };\n #endif\n #if CC_USE_LIGHT_PROBE\n vec3 SHEvaluate(vec3 normal)\n {\n vec3 result;\n #if USE_INSTANCING\n vec4 normal4 = vec4(normal, 1.0);\n result.r = dot(v_sh_linear_const_r, normal4);\n result.g = dot(v_sh_linear_const_g, normal4);\n result.b = dot(v_sh_linear_const_b, normal4);\n #else\n vec4 normal4 = vec4(normal, 1.0);\n result.r = dot(cc_sh_linear_const_r, normal4);\n result.g = dot(cc_sh_linear_const_g, normal4);\n result.b = dot(cc_sh_linear_const_b, normal4);\n vec4 n14 = normal.xyzz * normal.yzzx;\n float n5 = normal.x * normal.x - normal.y * normal.y;\n result.r += dot(cc_sh_quadratic_r, n14);\n result.g += dot(cc_sh_quadratic_g, n14);\n result.b += dot(cc_sh_quadratic_b, n14);\n result += (cc_sh_quadratic_a.rgb * n5);\n #endif\n #if CC_USE_HDR\n result *= cc_exposure.w * cc_exposure.x;\n #endif\n return result;\n }\n #endif\n#endif\n#endif\nfloat GGXMobile (float roughness, float NoH, vec3 H, vec3 N) {\n vec3 NxH = cross(N, H);\n float OneMinusNoHSqr = dot(NxH, NxH);\n float a = roughness * roughness;\n float n = NoH * a;\n float p = a / max(EPSILON, OneMinusNoHSqr + n * n);\n return p * p;\n}\nfloat CalcSpecular (float roughness, float NoH, vec3 H, vec3 N) {\n return (roughness * 0.25 + 0.25) * GGXMobile(roughness, NoH, H, N);\n}\nvec3 BRDFApprox (vec3 specular, float roughness, float NoV) {\n const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);\n const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);\n vec4 r = roughness * c0 + c1;\n float a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y;\n vec2 AB = vec2(-1.04, 1.04) * a004 + r.zw;\n AB.y *= clamp(50.0 * specular.g, 0.0, 1.0);\n return max(vec3(0.0), specular * AB.x + AB.y);\n}\n#if USE_REFLECTION_DENOISE\n vec3 GetEnvReflectionWithMipFiltering(vec3 R, float roughness, float mipCount, float denoiseIntensity, vec2 screenUV) {\n #if CC_USE_IBL\n \tfloat mip = roughness * (mipCount - 1.0);\n \tfloat delta = (dot(dFdx(R), dFdy(R))) * 1000.0;\n \tfloat mipBias = mix(0.0, 5.0, clamp(delta, 0.0, 1.0));\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_CUBE\n vec4 biased = fragTextureLod(cc_reflectionProbeCubemap, R, mip + mipBias);\n \t vec4 filtered = texture(cc_reflectionProbeCubemap, R);\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_PLANAR\n vec4 biased = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, mip + mipBias);\n vec4 filtered = texture(cc_reflectionProbePlanarMap, screenUV);\n #else\n vec4 biased = fragTextureLod(cc_environment, R, mip + mipBias);\n \t vec4 filtered = texture(cc_environment, R);\n #endif\n #if CC_USE_IBL == 2 || CC_USE_REFLECTION_PROBE != REFLECTION_PROBE_TYPE_NONE\n biased.rgb = unpackRGBE(biased);\n \tfiltered.rgb = unpackRGBE(filtered);\n #else\n \tbiased.rgb = SRGBToLinear(biased.rgb);\n \tfiltered.rgb = SRGBToLinear(filtered.rgb);\n #endif\n return mix(biased.rgb, filtered.rgb, denoiseIntensity);\n #else\n return vec3(0.0, 0.0, 0.0);\n #endif\n }\n#endif\nstruct StandardSurface {\n vec4 albedo;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n vec3 position, position_fract_part;\n #else\n vec3 position;\n #endif\n vec3 normal;\n vec3 emissive;\n vec4 lightmap;\n float lightmap_test;\n float roughness;\n float metallic;\n float occlusion;\n float specularIntensity;\n #if CC_RECEIVE_SHADOW\n vec2 shadowBias;\n #endif\n #if CC_RECEIVE_SHADOW || CC_USE_REFLECTION_PROBE\n float reflectionProbeId;\n #endif\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND || CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n float reflectionProbeBlendId;\n float reflectionProbeBlendFactor;\n #endif\n};\n vec3 SampleReflectionProbe(samplerCube tex, vec3 R, float roughness, float mipCount, bool isRGBE) {\n vec4 envmap = fragTextureLod(tex, R, roughness * (mipCount - 1.0));\n if (isRGBE)\n return unpackRGBE(envmap);\n else\n return SRGBToLinear(envmap.rgb);\n }\nvec4 CCStandardShadingBase (StandardSurface s, vec4 shadowPos) {\n vec3 diffuse = s.albedo.rgb * (1.0 - s.metallic);\n vec3 specular = mix(vec3(0.08 * s.specularIntensity), s.albedo.rgb, s.metallic);\n vec3 position;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n position = unpackHighpData(s.position, s.position_fract_part);\n #else\n position = s.position;\n #endif\n vec3 N = normalize(s.normal);\n vec3 V = normalize(cc_cameraPos.xyz - position);\n vec3 L = normalize(-cc_mainLitDir.xyz);\n float NL = max(dot(N, L), 0.0);\n float shadow = 1.0;\n #if CC_RECEIVE_SHADOW && CC_SHADOW_TYPE == 2\n if (NL > 0.0 && cc_mainLitDir.w > 0.0) {\n #if CC_DIR_LIGHT_SHADOW_TYPE == 2\n shadow = CCCSMFactorBase(position, N, s.shadowBias);\n #endif\n #if CC_DIR_LIGHT_SHADOW_TYPE == 1\n shadow = CCShadowFactorBase(shadowPos, N, s.shadowBias);\n #endif\n }\n #endif\n vec3 finalColor = vec3(0.0);\n #if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n vec3 lightmap = s.lightmap.rgb;\n #if CC_USE_HDR\n lightmap.rgb *= cc_exposure.w * cc_exposure.x;\n #endif\n #if CC_USE_LIGHTMAP == LIGHT_MAP_TYPE_INDIRECT_OCCLUSION\n shadow *= s.lightmap.a;\n finalColor += diffuse * lightmap.rgb;\n #else\n finalColor += diffuse * lightmap.rgb * shadow;\n #endif\n s.occlusion *= s.lightmap_test;\n #endif\n #if !CC_DISABLE_DIRECTIONAL_LIGHT\n float NV = max(abs(dot(N, V)), 0.0);\n specular = BRDFApprox(specular, s.roughness, NV);\n vec3 H = normalize(L + V);\n float NH = max(dot(N, H), 0.0);\n vec3 lightingColor = NL * cc_mainLitColor.rgb * cc_mainLitColor.w;\n vec3 diffuseContrib = diffuse / PI;\n vec3 specularContrib = specular * CalcSpecular(s.roughness, NH, H, N);\n vec3 dirlightContrib = (diffuseContrib + specularContrib);\n dirlightContrib *= shadow;\n finalColor += lightingColor * dirlightContrib;\n #endif\n float fAmb = max(EPSILON, 0.5 - N.y * 0.5);\n vec3 ambDiff = mix(cc_ambientSky.rgb, cc_ambientGround.rgb, fAmb);\n vec3 env = vec3(0.0), rotationDir;\n #if CC_USE_IBL\n #if CC_USE_DIFFUSEMAP && !CC_USE_LIGHT_PROBE\n rotationDir = RotationVecFromAxisY(N.xyz, cc_surfaceTransform.z, cc_surfaceTransform.w);\n vec4 diffuseMap = texture(cc_diffuseMap, rotationDir);\n #if CC_USE_DIFFUSEMAP == 2\n ambDiff = unpackRGBE(diffuseMap);\n #else\n ambDiff = SRGBToLinear(diffuseMap.rgb);\n #endif\n #endif\n #if !CC_USE_REFLECTION_PROBE\n vec3 R = normalize(reflect(-V, N));\n rotationDir = RotationVecFromAxisY(R.xyz, cc_surfaceTransform.z, cc_surfaceTransform.w);\n #if USE_REFLECTION_DENOISE && !CC_IBL_CONVOLUTED\n env = GetEnvReflectionWithMipFiltering(rotationDir, s.roughness, cc_ambientGround.w, 0.6, vec2(0.0));\n #else\n vec4 envmap = fragTextureLod(cc_environment, rotationDir, s.roughness * (cc_ambientGround.w - 1.0));\n #if CC_USE_IBL == 2\n env = unpackRGBE(envmap);\n #else\n env = SRGBToLinear(envmap.rgb);\n #endif\n #endif\n #endif\n #endif\n float lightIntensity = cc_ambientSky.w;\n #if CC_USE_REFLECTION_PROBE\n vec4 probe = vec4(0.0);\n vec3 R = normalize(reflect(-V, N));\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_CUBE\n if(s.reflectionProbeId < 0.0){\n env = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2);\n }else{\n vec3 centerPos, boxHalfSize;\n float mipCount;\n GetCubeReflectionProbeData(centerPos, boxHalfSize, mipCount, s.reflectionProbeId);\n vec4 fixedR = CalculateBoxProjectedDirection(R, position, centerPos, boxHalfSize);\n env = mix(SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2) * lightIntensity,\n SampleReflectionProbe(cc_reflectionProbeCubemap, fixedR.xyz, s.roughness, mipCount, isReflectProbeUsingRGBE(s.reflectionProbeId)), fixedR.w);\n }\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_PLANAR\n if(s.reflectionProbeId < 0.0){\n vec2 screenUV = GetPlanarReflectScreenUV(s.position, cc_matViewProj, cc_cameraPos.w, V, R);\n probe = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, 1.0);\n }else{\n vec4 plane;\n float planarReflectionDepthScale, mipCount;\n GetPlanarReflectionProbeData(plane, planarReflectionDepthScale, mipCount, s.reflectionProbeId);\n R = normalize(CalculateReflectDirection(N, V, max(abs(dot(N, V)), 0.0)));\n vec3 worldPosOffset = CalculatePlanarReflectPositionOnPlane(N, V, s.position, plane, cc_cameraPos.xyz, planarReflectionDepthScale);\n vec2 screenUV = GetPlanarReflectScreenUV(worldPosOffset, cc_matViewProj, cc_cameraPos.w, V, R);\n probe = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, mipCount);\n }\n env = unpackRGBE(probe);\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND || CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n if (s.reflectionProbeId < 0.0) {\n env = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2);\n } else {\n vec3 centerPos, boxHalfSize;\n float mipCount;\n GetCubeReflectionProbeData(centerPos, boxHalfSize, mipCount, s.reflectionProbeId);\n vec4 fixedR = CalculateBoxProjectedDirection(R, s.position, centerPos, boxHalfSize);\n env = SampleReflectionProbe(cc_reflectionProbeCubemap, fixedR.xyz, s.roughness, mipCount, isReflectProbeUsingRGBE(s.reflectionProbeId));\n if (s.reflectionProbeBlendId < 0.0) {\n vec3 skyBoxEnv = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2) * lightIntensity;\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n env = mix(env, skyBoxEnv, s.reflectionProbeBlendFactor);\n #else\n env = mix(skyBoxEnv, env, fixedR.w);\n #endif\n } else {\n vec3 centerPosBlend, boxHalfSizeBlend;\n float mipCountBlend;\n GetBlendCubeReflectionProbeData(centerPosBlend, boxHalfSizeBlend, mipCountBlend, s.reflectionProbeBlendId);\n vec4 fixedRBlend = CalculateBoxProjectedDirection(R, s.position, centerPosBlend, boxHalfSizeBlend);\n vec3 probe1 = SampleReflectionProbe(cc_reflectionProbeBlendCubemap, fixedRBlend.xyz, s.roughness, mipCountBlend, isBlendReflectProbeUsingRGBE(s.reflectionProbeBlendId));\n env = mix(env, probe1, s.reflectionProbeBlendFactor);\n }\n }\n #endif\n #endif\n #if CC_USE_REFLECTION_PROBE\n lightIntensity = s.reflectionProbeId < 0.0 ? lightIntensity : 1.0;\n #endif\n finalColor += env * lightIntensity * specular * s.occlusion;\n#if CC_USE_LIGHT_PROBE\n finalColor += SHEvaluate(N) * diffuse * s.occlusion;\n#endif\n finalColor += ambDiff.rgb * cc_ambientSky.w * diffuse * s.occlusion;\n finalColor += s.emissive;\n return vec4(finalColor, s.albedo.a);\n}\nvec3 ACESToneMap (vec3 color) {\n color = min(color, vec3(8.0));\n const float A = 2.51;\n const float B = 0.03;\n const float C = 2.43;\n const float D = 0.59;\n const float E = 0.14;\n return (color * (A * color + B)) / (color * (C * color + D) + E);\n}\nvec4 CCFragOutput (vec4 color) {\n #if CC_USE_RGBE_OUTPUT\n color = packRGBE(color.rgb);\n #elif !CC_USE_FLOAT_OUTPUT\n #if CC_USE_HDR && CC_TONE_MAPPING_TYPE == HDR_TONE_MAPPING_ACES\n color.rgb = ACESToneMap(color.rgb);\n #endif\n color.rgb = LinearToSRGB(color.rgb);\n #endif\n return color;\n}\nlayout(location = 1) in highp vec4 v_shadowPos;\n#if CC_RECEIVE_SHADOW && CC_SHADOW_TYPE == 2\n#endif\n#if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n layout(location = 12) in vec3 v_luv;\n layout(set = 2, binding = 11) uniform sampler2D cc_lightingMap;\n void SampleAndDecodeLightMapColor(out vec3 lightmapColor, out float dirShadow, out float ao, sampler2D lightingMap, vec2 luv, float lum, vec3 worldNormal)\n {\n #if CC_LIGHT_MAP_VERSION > 2\n #elif CC_LIGHT_MAP_VERSION > 1\n \tvec4 dataLow = texture(lightingMap, luv);\n \tvec4 dataHigh = texture(lightingMap, luv + vec2(0.5, 0.0));\n \tlightmapColor.xyz = dataLow.xyz + dataHigh.xyz * 0.00392156862745098;\n lightmapColor.rgb *= lum;\n \tdirShadow = dataLow.a;\n \tao = dataHigh.a;\n #else\n vec4 lightmap = texture(lightingMap, luv);\n lightmapColor = lightmap.rgb * lum;\n \tdirShadow = lightmap.a;\n \tao = 1.0;\n #endif\n }\n#endif\nlayout(location = 6) in vec3 v_position;\nlayout(location = 8) in vec2 v_uv;\nlayout(location = 9) in vec2 v_uv1;\nlayout(location = 7) in vec3 v_normal;\n#if USE_VERTEX_COLOR\n layout(location = 5) in vec4 v_color;\n#endif\n#if USE_ALBEDO_MAP\n layout(set = 1, binding = 1) uniform sampler2D albedoMap;\n#endif\n#if USE_NORMAL_MAP\n layout(location = 10) in vec3 v_tangent;\n layout(location = 11) in vec3 v_bitangent;\n layout(set = 1, binding = 2) uniform sampler2D normalMap;\n#endif\n#if USE_PBR_MAP\n layout(set = 1, binding = 3) uniform sampler2D pbrMap;\n#endif\n#if USE_METALLIC_ROUGHNESS_MAP\n layout(set = 1, binding = 4) uniform sampler2D metallicRoughnessMap;\n#endif\n#if USE_OCCLUSION_MAP\n layout(set = 1, binding = 5) uniform sampler2D occlusionMap;\n#endif\n#if USE_EMISSIVE_MAP\n layout(set = 1, binding = 6) uniform sampler2D emissiveMap;\n#endif\n#if USE_ALPHA_TEST\n#endif\nvoid surf (out StandardSurface s) {\n vec4 baseColor = albedo;\n #if USE_VERTEX_COLOR\n baseColor *= v_color;\n #endif\n #if USE_ALBEDO_MAP\n vec4 texColor = texture(albedoMap, ALBEDO_UV);\n texColor.rgb = SRGBToLinear(texColor.rgb);\n baseColor *= texColor;\n #endif\n s.albedo = baseColor;\n s.albedo.rgb *= albedoScaleAndCutoff.xyz;\n #if USE_ALPHA_TEST\n if (s.albedo.ALPHA_TEST_CHANNEL < albedoScaleAndCutoff.w) discard;\n #endif\n s.normal = v_normal;\n #if USE_NORMAL_MAP\n vec3 nmmp = texture(normalMap, NORMAL_UV).xyz - vec3(0.5);\n s.normal =\n (nmmp.x * pbrParams.w) * normalize(v_tangent) +\n (nmmp.y * pbrParams.w) * normalize(v_bitangent) +\n nmmp.z * normalize(s.normal);\n #endif\n #if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n SampleAndDecodeLightMapColor(s.lightmap.rgb, s.lightmap.a, s.lightmap_test, cc_lightingMap, v_luv.xy, v_luv.z, s.normal);\n #endif\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n packHighpData(s.position, s.position_fract_part, v_position);\n #else\n s.position = v_position;\n #endif\n vec4 pbr = pbrParams;\n pbr.x = 1.0 - pbr.x;\n #if USE_PBR_MAP\n vec4 res = texture(pbrMap, PBR_UV);\n pbr.x *= res.r;\n pbr.y *= res.g;\n pbr.z *= res.b;\n #endif\n #if USE_METALLIC_ROUGHNESS_MAP\n vec4 metallicRoughness = texture(metallicRoughnessMap, PBR_UV);\n pbr.z *= metallicRoughness.b;\n pbr.y *= metallicRoughness.g;\n #endif\n #if USE_OCCLUSION_MAP\n pbr.x *= texture(occlusionMap, PBR_UV).r;\n #endif\n s.occlusion = pbr.x;\n s.roughness = pbr.y;\n s.specularIntensity = 0.5;\n s.metallic = pbr.z;\n s.emissive = emissive.rgb * emissiveScaleParam.xyz;\n #if USE_EMISSIVE_MAP\n s.emissive *= SRGBToLinear(texture(emissiveMap, EMISSIVE_UV).rgb);\n #endif\n}\nlayout(set = 2, binding = 13) uniform sampler2D cc_reflectionTexture;\nlayout(location = 0) out vec4 fragColorX;\nvoid main () {\n StandardSurface s; surf(s);\n vec4 color = CCStandardShadingBase(s, v_shadowPos);\n CC_APPLY_FOG(color, s.position.xyz);\n vec4 baseColor = CCFragOutput(color);\n vec2 noise = v_normal.xy * 0.02;\n #if USE_NORMAL_MAP\n noise = texture(normalMap, ALBEDO_UV).xy * 0.02;\n #endif\n vec2 resolution = cc_screenSize.xy;\n vec2 uv = (gl_FragCoord.xy / resolution) + noise;\n vec4 reflectionColor = texture(cc_reflectionTexture, uv);\n fragColorX = mix(baseColor, reflectionColor, 0.5);\n fragColorX.w = 1.0;\n}" }, "glsl3": { "vert": "\nprecision highp float;\n#define QUATER_PI 0.78539816340\n#define HALF_PI 1.57079632679\n#define PI 3.14159265359\n#define PI2 6.28318530718\n#define PI4 12.5663706144\n#define INV_QUATER_PI 1.27323954474\n#define INV_HALF_PI 0.63661977237\n#define INV_PI 0.31830988618\n#define INV_PI2 0.15915494309\n#define INV_PI4 0.07957747155\n#define EPSILON 1e-6\n#define EPSILON_LOWP 1e-4\n#define LOG2 1.442695\n#define EXP_VALUE 2.71828183\n#define FP_MAX 65504.0\n#define FP_SCALE 0.0009765625\n#define FP_SCALE_INV 1024.0\n#define GRAY_VECTOR vec3(0.299, 0.587, 0.114)\n#define LIGHT_MAP_TYPE_DISABLED 0\n#define LIGHT_MAP_TYPE_ALL_IN_ONE 1\n#define LIGHT_MAP_TYPE_INDIRECT_OCCLUSION 2\n#define REFLECTION_PROBE_TYPE_NONE 0\n#define REFLECTION_PROBE_TYPE_CUBE 1\n#define REFLECTION_PROBE_TYPE_PLANAR 2\n#define REFLECTION_PROBE_TYPE_BLEND 3\n#define REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX 4\n#define LIGHT_TYPE_DIRECTIONAL 0.0\n#define LIGHT_TYPE_SPHERE 1.0\n#define LIGHT_TYPE_SPOT 2.0\n#define LIGHT_TYPE_POINT 3.0\n#define LIGHT_TYPE_RANGED_DIRECTIONAL 4.0\n#define IS_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_DIRECTIONAL)) < EPSILON_LOWP)\n#define IS_SPHERE_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPHERE)) < EPSILON_LOWP)\n#define IS_SPOT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPOT)) < EPSILON_LOWP)\n#define IS_POINT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_POINT)) < EPSILON_LOWP)\n#define IS_RANGED_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_RANGED_DIRECTIONAL)) < EPSILON_LOWP)\n#define TONE_MAPPING_ACES 0\n#define TONE_MAPPING_LINEAR 1\n#define SURFACES_MAX_TRANSMIT_DEPTH_VALUE 999999.0\n#ifndef CC_SURFACES_DEBUG_VIEW_SINGLE\n #define CC_SURFACES_DEBUG_VIEW_SINGLE 1\n#endif\n#ifndef CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC\n #define CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC 2\n#endif\nstruct StandardVertInput {\n highp vec4 position;\n vec3 normal;\n vec4 tangent;\n};\nin vec3 a_position;\nin vec3 a_normal;\nin vec2 a_texCoord;\nin vec4 a_tangent;\n#if CC_USE_SKINNING\n in vec4 a_joints;\n in vec4 a_weights;\n#endif\n#if USE_INSTANCING\n #if CC_USE_BAKED_ANIMATION\n in highp vec4 a_jointAnimInfo;\n #endif\n in vec4 a_matWorld0;\n in vec4 a_matWorld1;\n in vec4 a_matWorld2;\n #if CC_USE_LIGHTMAP\n in vec4 a_lightingMapUVParam;\n #endif\n #if CC_USE_REFLECTION_PROBE || CC_RECEIVE_SHADOW\n #if CC_RECEIVE_SHADOW\n #endif\n in vec4 a_localShadowBiasAndProbeId;\n #endif\n #if CC_USE_REFLECTION_PROBE\n in vec4 a_reflectionProbeData;\n #endif\n #if CC_USE_LIGHT_PROBE\n in vec4 a_sh_linear_const_r;\n in vec4 a_sh_linear_const_g;\n in vec4 a_sh_linear_const_b;\n #endif\n#endif\n#if CC_USE_MORPH\n in float a_vertexId;\n int getVertexId() {\n return int(a_vertexId);\n }\n#endif\nhighp float decode32 (highp vec4 rgba) {\n rgba = rgba * 255.0;\n highp float Sign = 1.0 - (step(128.0, (rgba[3]) + 0.5)) * 2.0;\n highp float Exponent = 2.0 * (mod(float(int((rgba[3]) + 0.5)), 128.0)) + (step(128.0, (rgba[2]) + 0.5)) - 127.0;\n highp float Mantissa = (mod(float(int((rgba[2]) + 0.5)), 128.0)) * 65536.0 + rgba[1] * 256.0 + rgba[0] + 8388608.0;\n return Sign * exp2(Exponent - 23.0) * Mantissa;\n}\n#if CC_USE_MORPH\n layout(std140) uniform CCMorph {\n vec4 cc_displacementWeights[15];\n vec4 cc_displacementTextureInfo;\n };\n #if CC_MORPH_TARGET_HAS_POSITION\n uniform sampler2D cc_PositionDisplacements;\n #endif\n #if CC_MORPH_TARGET_HAS_NORMAL\n uniform sampler2D cc_NormalDisplacements;\n #endif\n #if CC_MORPH_TARGET_HAS_TANGENT\n uniform sampler2D cc_TangentDisplacements;\n #endif\n vec2 getPixelLocation(vec2 textureResolution, int pixelIndex) {\n float pixelIndexF = float(pixelIndex);\n float x = mod(pixelIndexF, textureResolution.x);\n float y = floor(pixelIndexF / textureResolution.x);\n return vec2(x, y);\n }\n vec2 getPixelCoordFromLocation(vec2 location, vec2 textureResolution) {\n return (vec2(location.x, location.y) + .5) / textureResolution;\n }\n #if CC_DEVICE_SUPPORT_FLOAT_TEXTURE\n vec4 fetchVec3ArrayFromTexture(sampler2D tex, int pixelIndex) {\n ivec2 texSize = textureSize(tex, 0);\n return texelFetch(tex, ivec2(pixelIndex % texSize.x, pixelIndex / texSize.x), 0);\n }\n #else\n vec4 fetchVec3ArrayFromTexture(sampler2D tex, int elementIndex) {\n int pixelIndex = elementIndex * 4;\n vec2 location = getPixelLocation(cc_displacementTextureInfo.xy, pixelIndex);\n vec2 x = getPixelCoordFromLocation(location + vec2(0.0, 0.0), cc_displacementTextureInfo.xy);\n vec2 y = getPixelCoordFromLocation(location + vec2(1.0, 0.0), cc_displacementTextureInfo.xy);\n vec2 z = getPixelCoordFromLocation(location + vec2(2.0, 0.0), cc_displacementTextureInfo.xy);\n return vec4(\n decode32(texture(tex, x)),\n decode32(texture(tex, y)),\n decode32(texture(tex, z)),\n 1.0\n );\n }\n #endif\n float getDisplacementWeight(int index) {\n int quot = index / 4;\n int remainder = index - quot * 4;\n if (remainder == 0) {\n return cc_displacementWeights[quot].x;\n } else if (remainder == 1) {\n return cc_displacementWeights[quot].y;\n } else if (remainder == 2) {\n return cc_displacementWeights[quot].z;\n } else {\n return cc_displacementWeights[quot].w;\n }\n }\n vec3 getVec3DisplacementFromTexture(sampler2D tex, int vertexIndex) {\n #if CC_MORPH_PRECOMPUTED\n return fetchVec3ArrayFromTexture(tex, vertexIndex).rgb;\n #else\n vec3 result = vec3(0, 0, 0);\n int nVertices = int(cc_displacementTextureInfo.z);\n for (int iTarget = 0; iTarget < CC_MORPH_TARGET_COUNT; ++iTarget) {\n result += (fetchVec3ArrayFromTexture(tex, nVertices * iTarget + vertexIndex).rgb * getDisplacementWeight(iTarget));\n }\n return result;\n #endif\n }\n #if CC_MORPH_TARGET_HAS_POSITION\n vec3 getPositionDisplacement(int vertexId) {\n return getVec3DisplacementFromTexture(cc_PositionDisplacements, vertexId);\n }\n #endif\n #if CC_MORPH_TARGET_HAS_NORMAL\n vec3 getNormalDisplacement(int vertexId) {\n return getVec3DisplacementFromTexture(cc_NormalDisplacements, vertexId);\n }\n #endif\n #if CC_MORPH_TARGET_HAS_TANGENT\n vec3 getTangentDisplacement(int vertexId) {\n return getVec3DisplacementFromTexture(cc_TangentDisplacements, vertexId);\n }\n #endif\n void applyMorph (inout vec4 position, inout vec3 normal, inout vec4 tangent) {\n int vertexId = getVertexId();\n #if CC_MORPH_TARGET_HAS_POSITION\n position.xyz = position.xyz + getPositionDisplacement(vertexId);\n #endif\n #if CC_MORPH_TARGET_HAS_NORMAL\n normal.xyz = normal.xyz + getNormalDisplacement(vertexId);\n #endif\n #if CC_MORPH_TARGET_HAS_TANGENT\n tangent.xyz = tangent.xyz + getTangentDisplacement(vertexId);\n #endif\n }\n void applyMorph (inout vec4 position) {\n #if CC_MORPH_TARGET_HAS_POSITION\n position.xyz = position.xyz + getPositionDisplacement(getVertexId());\n #endif\n }\n#endif\n#if CC_USE_SKINNING\n #if CC_USE_BAKED_ANIMATION\n layout(std140) uniform CCSkinningTexture {\n highp vec4 cc_jointTextureInfo;\n };\n layout(std140) uniform CCSkinningAnimation {\n highp vec4 cc_jointAnimInfo;\n };\n uniform highp sampler2D cc_jointTexture;\n void CCGetJointTextureCoords(float pixelsPerJoint, float jointIdx, out highp float x, out highp float y, out highp float invSize)\n {\n #if USE_INSTANCING\n highp float temp = pixelsPerJoint * (a_jointAnimInfo.x * a_jointAnimInfo.y + jointIdx) + a_jointAnimInfo.z;\n #else\n highp float temp = pixelsPerJoint * (cc_jointAnimInfo.x * cc_jointTextureInfo.y + jointIdx) + cc_jointTextureInfo.z;\n #endif\n invSize = cc_jointTextureInfo.w;\n highp float tempY = floor(temp * invSize);\n x = floor(temp - tempY * cc_jointTextureInfo.x);\n y = (tempY + 0.5) * invSize;\n }\n #else\n #if CC_USE_REAL_TIME_JOINT_TEXTURE\n uniform highp sampler2D cc_realtimeJoint;\n #else\n layout(std140) uniform CCSkinning {\n highp vec4 cc_joints[CC_JOINT_UNIFORM_CAPACITY * 3];\n };\n #endif\n #endif\n #if CC_USE_BAKED_ANIMATION\n #if CC_DEVICE_SUPPORT_FLOAT_TEXTURE\n mat4 getJointMatrix (float i) {\n highp float x, y, invSize;\n CCGetJointTextureCoords(3.0, i, x, y, invSize);\n vec4 v1 = texture(cc_jointTexture, vec2((x + 0.5) * invSize, y));\n vec4 v2 = texture(cc_jointTexture, vec2((x + 1.5) * invSize, y));\n vec4 v3 = texture(cc_jointTexture, vec2((x + 2.5) * invSize, y));\n return mat4(vec4(v1.xyz, 0.0), vec4(v2.xyz, 0.0), vec4(v3.xyz, 0.0), vec4(v1.w, v2.w, v3.w, 1.0));\n }\n #else\n mat4 getJointMatrix (float i) {\n highp float x, y, invSize;\n CCGetJointTextureCoords(12.0, i, x, y, invSize);\n vec4 v1 = vec4(\n decode32(texture(cc_jointTexture, vec2((x + 0.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 1.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 2.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 3.5) * invSize, y)))\n );\n vec4 v2 = vec4(\n decode32(texture(cc_jointTexture, vec2((x + 4.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 5.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 6.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 7.5) * invSize, y)))\n );\n vec4 v3 = vec4(\n decode32(texture(cc_jointTexture, vec2((x + 8.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 9.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 10.5) * invSize, y))),\n decode32(texture(cc_jointTexture, vec2((x + 11.5) * invSize, y)))\n );\n return mat4(vec4(v1.xyz, 0.0), vec4(v2.xyz, 0.0), vec4(v3.xyz, 0.0), vec4(v1.w, v2.w, v3.w, 1.0));\n }\n #endif\n #else\n #if CC_USE_REAL_TIME_JOINT_TEXTURE\n #if CC_DEVICE_SUPPORT_FLOAT_TEXTURE\n mat4 getJointMatrix (float i) {\n float x = i;\n vec4 v1 = texture(cc_realtimeJoint, vec2( x / 256.0, 0.5 / 3.0));\n vec4 v2 = texture(cc_realtimeJoint, vec2( x / 256.0, 1.5 / 3.0));\n vec4 v3 = texture(cc_realtimeJoint, vec2( x / 256.0, 2.5 / 3.0));\n return mat4(vec4(v1.xyz, 0.0), vec4(v2.xyz, 0.0), vec4(v3.xyz, 0.0), vec4(v1.w, v2.w, v3.w, 1.0));\n }\n #else\n mat4 getJointMatrix (float i) {\n float x = 4.0 * i;\n vec4 v1 = vec4(\n decode32(texture(cc_realtimeJoint, vec2((x + 0.5)/ 1024.0, 0.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 1.5)/ 1024.0, 0.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 2.5)/ 1024.0, 0.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 3.5)/ 1024.0, 0.5 / 3.0)))\n );\n vec4 v2 = vec4(\n decode32(texture(cc_realtimeJoint, vec2((x + 0.5)/ 1024.0, 1.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 1.5)/ 1024.0, 1.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 2.5)/ 1024.0, 1.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 3.5)/ 1024.0, 1.5 / 3.0)))\n );\n vec4 v3 = vec4(\n decode32(texture(cc_realtimeJoint, vec2((x + 0.5)/ 1024.0, 2.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 1.5)/ 1024.0, 2.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 2.5)/ 1024.0, 2.5 / 3.0))),\n decode32(texture(cc_realtimeJoint, vec2((x + 3.5)/ 1024.0, 2.5 / 3.0)))\n );\n return mat4(vec4(v1.xyz, 0.0), vec4(v2.xyz, 0.0), vec4(v3.xyz, 0.0), vec4(v1.w, v2.w, v3.w, 1.0));\n }\n #endif\n #else\n mat4 getJointMatrix (float i) {\n int idx = int(i);\n vec4 v1 = cc_joints[idx * 3];\n vec4 v2 = cc_joints[idx * 3 + 1];\n vec4 v3 = cc_joints[idx * 3 + 2];\n return mat4(vec4(v1.xyz, 0.0), vec4(v2.xyz, 0.0), vec4(v3.xyz, 0.0), vec4(v1.w, v2.w, v3.w, 1.0));\n }\n #endif\n #endif\n mat4 skinMatrix () {\n vec4 joints = vec4(a_joints);\n return getJointMatrix(joints.x) * a_weights.x\n + getJointMatrix(joints.y) * a_weights.y\n + getJointMatrix(joints.z) * a_weights.z\n + getJointMatrix(joints.w) * a_weights.w;\n }\n void CCSkin (inout vec4 position) {\n mat4 m = skinMatrix();\n position = m * position;\n }\n void CCSkin (inout vec4 position, inout vec3 normal, inout vec4 tangent) {\n mat4 m = skinMatrix();\n position = m * position;\n normal = (m * vec4(normal, 0.0)).xyz;\n tangent.xyz = (m * vec4(tangent.xyz, 0.0)).xyz;\n }\n#endif\nvoid CCVertInput(inout StandardVertInput In)\n{\n In.position = vec4(a_position, 1.0);\n In.normal = a_normal;\n In.tangent = a_tangent;\n #if CC_USE_MORPH\n applyMorph(In.position, In.normal, In.tangent);\n #endif\n #if CC_USE_SKINNING\n CCSkin(In.position, In.normal, In.tangent);\n #endif\n}\nlayout(std140) uniform CCGlobal {\n highp vec4 cc_time;\n mediump vec4 cc_screenSize;\n mediump vec4 cc_nativeSize;\n mediump vec4 cc_probeInfo;\n mediump vec4 cc_debug_view_mode;\n};\nlayout(std140) uniform CCCamera {\n highp mat4 cc_matView;\n highp mat4 cc_matViewInv;\n highp mat4 cc_matProj;\n highp mat4 cc_matProjInv;\n highp mat4 cc_matViewProj;\n highp mat4 cc_matViewProjInv;\n highp vec4 cc_cameraPos;\n mediump vec4 cc_surfaceTransform;\n mediump vec4 cc_screenScale;\n mediump vec4 cc_exposure;\n mediump vec4 cc_mainLitDir;\n mediump vec4 cc_mainLitColor;\n mediump vec4 cc_ambientSky;\n mediump vec4 cc_ambientGround;\n mediump vec4 cc_fogColor;\n mediump vec4 cc_fogBase;\n mediump vec4 cc_fogAdd;\n mediump vec4 cc_nearFar;\n mediump vec4 cc_viewPort;\n};\n#if !USE_INSTANCING\n layout(std140) uniform CCLocal {\n highp mat4 cc_matWorld;\n highp mat4 cc_matWorldIT;\n highp vec4 cc_lightingMapUVParam;\n highp vec4 cc_localShadowBias;\n highp vec4 cc_reflectionProbeData1;\n highp vec4 cc_reflectionProbeData2;\n highp vec4 cc_reflectionProbeBlendData1;\n highp vec4 cc_reflectionProbeBlendData2;\n };\n#endif\nvoid CCGetWorldMatrixFull(out mat4 matWorld, out mat4 matWorldIT)\n{\n #if USE_INSTANCING\n matWorld = mat4(\n vec4(a_matWorld0.xyz, 0.0),\n vec4(a_matWorld1.xyz, 0.0),\n vec4(a_matWorld2.xyz, 0.0),\n vec4(a_matWorld0.w, a_matWorld1.w, a_matWorld2.w, 1.0)\n );\n vec3 scale = 1.0 / vec3(length(a_matWorld0.xyz), length(a_matWorld1.xyz), length(a_matWorld2.xyz));\n vec3 scale2 = scale * scale;\n matWorldIT = mat4(\n vec4(a_matWorld0.xyz * scale2.x, 0.0),\n vec4(a_matWorld1.xyz * scale2.y, 0.0),\n vec4(a_matWorld2.xyz * scale2.z, 0.0),\n vec4(0.0, 0.0, 0.0, 1.0)\n );\n #else\n matWorld = cc_matWorld;\n matWorldIT = cc_matWorldIT;\n #endif\n}\nlayout(std140) uniform Constants {\n vec4 tilingOffset;\n vec4 albedo;\n vec4 albedoScaleAndCutoff;\n vec4 pbrParams;\n vec4 emissive;\n vec4 emissiveScaleParam;\n};\n#if CC_USE_FOG != 4\n float LinearFog(vec4 pos, vec3 cameraPos, float fogStart, float fogEnd) {\n vec4 wPos = pos;\n float cam_dis = distance(cameraPos, wPos.xyz);\n return clamp((fogEnd - cam_dis) / (fogEnd - fogStart), 0., 1.);\n }\n float ExpFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * fogDensity);\n return f;\n }\n float ExpSquaredFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * cam_dis * fogDensity * fogDensity);\n return f;\n }\n float LayeredFog(vec4 pos, vec3 cameraPos, float fogTop, float fogRange, float fogAtten) {\n vec4 wPos = pos;\n vec3 camWorldProj = cameraPos.xyz;\n camWorldProj.y = 0.;\n vec3 worldPosProj = wPos.xyz;\n worldPosProj.y = 0.;\n float fDeltaD = distance(worldPosProj, camWorldProj) / fogAtten * 2.0;\n float fDeltaY, fDensityIntegral;\n if (cameraPos.y > fogTop) {\n if (wPos.y < fogTop) {\n fDeltaY = (fogTop - wPos.y) / fogRange * 2.0;\n fDensityIntegral = fDeltaY * fDeltaY * 0.5;\n }\n else {\n fDeltaY = 0.;\n fDensityIntegral = 0.;\n }\n }\n else {\n if (wPos.y < fogTop) {\n float fDeltaA = (fogTop - cameraPos.y) / fogRange * 2.;\n float fDeltaB = (fogTop - wPos.y) / fogRange * 2.;\n fDeltaY = abs(fDeltaA - fDeltaB);\n fDensityIntegral = abs((fDeltaA * fDeltaA * 0.5) - (fDeltaB * fDeltaB * 0.5));\n }\n else {\n fDeltaY = abs(fogTop - cameraPos.y) / fogRange * 2.;\n fDensityIntegral = abs(fDeltaY * fDeltaY * 0.5);\n }\n }\n float fDensity;\n if (fDeltaY != 0.) {\n fDensity = (sqrt(1.0 + ((fDeltaD / fDeltaY) * (fDeltaD / fDeltaY)))) * fDensityIntegral;\n }\n else {\n fDensity = 0.;\n }\n float f = exp(-fDensity);\n return f;\n }\n#endif\nvoid CC_TRANSFER_FOG_BASE(vec4 pos, out float factor)\n{\n#if CC_USE_FOG == 0\n\tfactor = LinearFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.y);\n#elif CC_USE_FOG == 1\n\tfactor = ExpFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n#elif CC_USE_FOG == 2\n\tfactor = ExpSquaredFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n#elif CC_USE_FOG == 3\n\tfactor = LayeredFog(pos, cc_cameraPos.xyz, cc_fogAdd.x, cc_fogAdd.y, cc_fogAdd.z);\n#else\n\tfactor = 1.0;\n#endif\n}\n#if !CC_USE_ACCURATE_FOG\nout mediump float v_fog_factor;\n#endif\nvoid CC_TRANSFER_FOG(vec4 pos) {\n#if !CC_USE_ACCURATE_FOG\n CC_TRANSFER_FOG_BASE(pos, v_fog_factor);\n#endif\n}\nout highp vec4 v_shadowPos;\nlayout(std140) uniform CCShadow {\n highp mat4 cc_matLightView;\n highp mat4 cc_matLightViewProj;\n highp vec4 cc_shadowInvProjDepthInfo;\n highp vec4 cc_shadowProjDepthInfo;\n highp vec4 cc_shadowProjInfo;\n mediump vec4 cc_shadowNFLSInfo;\n mediump vec4 cc_shadowWHPBInfo;\n mediump vec4 cc_shadowLPNNInfo;\n lowp vec4 cc_shadowColor;\n mediump vec4 cc_planarNDInfo;\n};\n#if CC_SUPPORT_CASCADED_SHADOW_MAP\n layout(std140) uniform CCCSM {\n highp vec4 cc_csmViewDir0[4];\n highp vec4 cc_csmViewDir1[4];\n highp vec4 cc_csmViewDir2[4];\n highp vec4 cc_csmAtlas[4];\n highp mat4 cc_matCSMViewProj[4];\n highp vec4 cc_csmProjDepthInfo[4];\n highp vec4 cc_csmProjInfo[4];\n highp vec4 cc_csmSplitsInfo;\n };\n#endif\n#if defined(CC_USE_METAL) || defined(CC_USE_WGPU)\n#define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y) y = -y\n#else\n#define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y)\n#endif\n#if CC_RECEIVE_SHADOW\n uniform highp sampler2D cc_shadowMap;\n uniform highp sampler2D cc_spotShadowMap;\n #define UnpackBitFromFloat(value, bit) (mod(floor(value / pow(10.0, float(bit))), 10.0) > 0.0)\n #if CC_SUPPORT_CASCADED_SHADOW_MAP\n #else\n #endif\n#endif\n#if CC_RECEIVE_SHADOW\n#endif\n#if CC_USE_LIGHT_PROBE\n #if USE_INSTANCING\n out mediump vec4 v_sh_linear_const_r;\n out mediump vec4 v_sh_linear_const_g;\n out mediump vec4 v_sh_linear_const_b;\n #endif\n#endif\nvoid CC_TRANSFER_SH() {\n#if CC_USE_LIGHT_PROBE\n #if USE_INSTANCING\n v_sh_linear_const_r = a_sh_linear_const_r;\n v_sh_linear_const_g = a_sh_linear_const_g;\n v_sh_linear_const_b = a_sh_linear_const_b;\n #endif\n#endif\n}\n#if USE_VERTEX_COLOR\n in vec4 a_color;\n out vec4 v_color;\n#endif\nout vec3 v_position;\nout vec3 v_normal;\nout vec2 v_uv;\nout vec2 v_uv1;\n#if USE_NORMAL_MAP\n out vec3 v_tangent;\n out vec3 v_bitangent;\n#endif\n#if HAS_SECOND_UV || CC_USE_LIGHTMAP\n in vec2 a_texCoord1;\n#endif\n#if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n out vec3 v_luv;\n void CCLightingMapCaclUV()\n {\n #if !USE_INSTANCING\n v_luv.xy = cc_lightingMapUVParam.xy + a_texCoord1 * cc_lightingMapUVParam.z;\n v_luv.z = cc_lightingMapUVParam.w;\n #else\n v_luv.xy = a_lightingMapUVParam.xy + a_texCoord1 * a_lightingMapUVParam.z;\n v_luv.z = a_lightingMapUVParam.w;\n #endif\n }\n#endif\nvoid main () {\n StandardVertInput In;\n CCVertInput(In);\n mat4 matWorld, matWorldIT;\n CCGetWorldMatrixFull(matWorld, matWorldIT);\n vec4 pos = matWorld * In.position;\n v_position = pos.xyz;\n v_normal = normalize((matWorldIT * vec4(In.normal, 0.0)).xyz);\n #if USE_NORMAL_MAP\n v_tangent = normalize((matWorld * vec4(In.tangent.xyz, 0.0)).xyz);\n v_bitangent = cross(v_normal, v_tangent) * In.tangent.w;\n #endif\n v_uv = a_texCoord * tilingOffset.xy + tilingOffset.zw;\n #if HAS_SECOND_UV\n v_uv1 = a_texCoord1 * tilingOffset.xy + tilingOffset.zw;\n #endif\n #if USE_VERTEX_COLOR\n v_color = a_color;\n #endif\n CC_TRANSFER_FOG(pos);\n v_shadowPos = cc_matLightViewProj * pos;\n CC_TRANSFER_SH();\n #if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n CCLightingMapCaclUV();\n #endif\n gl_Position = cc_matProj * (cc_matView * matWorld) * In.position;\n}", "frag": "\nprecision highp float;\nlayout(std140) uniform CCGlobal {\n highp vec4 cc_time;\n mediump vec4 cc_screenSize;\n mediump vec4 cc_nativeSize;\n mediump vec4 cc_probeInfo;\n mediump vec4 cc_debug_view_mode;\n};\nlayout(std140) uniform CCCamera {\n highp mat4 cc_matView;\n highp mat4 cc_matViewInv;\n highp mat4 cc_matProj;\n highp mat4 cc_matProjInv;\n highp mat4 cc_matViewProj;\n highp mat4 cc_matViewProjInv;\n highp vec4 cc_cameraPos;\n mediump vec4 cc_surfaceTransform;\n mediump vec4 cc_screenScale;\n mediump vec4 cc_exposure;\n mediump vec4 cc_mainLitDir;\n mediump vec4 cc_mainLitColor;\n mediump vec4 cc_ambientSky;\n mediump vec4 cc_ambientGround;\n mediump vec4 cc_fogColor;\n mediump vec4 cc_fogBase;\n mediump vec4 cc_fogAdd;\n mediump vec4 cc_nearFar;\n mediump vec4 cc_viewPort;\n};\nlayout(std140) uniform Constants {\n vec4 tilingOffset;\n vec4 albedo;\n vec4 albedoScaleAndCutoff;\n vec4 pbrParams;\n vec4 emissive;\n vec4 emissiveScaleParam;\n};\n#if CC_USE_FOG != 4\n float LinearFog(vec4 pos, vec3 cameraPos, float fogStart, float fogEnd) {\n vec4 wPos = pos;\n float cam_dis = distance(cameraPos, wPos.xyz);\n return clamp((fogEnd - cam_dis) / (fogEnd - fogStart), 0., 1.);\n }\n float ExpFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * fogDensity);\n return f;\n }\n float ExpSquaredFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * cam_dis * fogDensity * fogDensity);\n return f;\n }\n float LayeredFog(vec4 pos, vec3 cameraPos, float fogTop, float fogRange, float fogAtten) {\n vec4 wPos = pos;\n vec3 camWorldProj = cameraPos.xyz;\n camWorldProj.y = 0.;\n vec3 worldPosProj = wPos.xyz;\n worldPosProj.y = 0.;\n float fDeltaD = distance(worldPosProj, camWorldProj) / fogAtten * 2.0;\n float fDeltaY, fDensityIntegral;\n if (cameraPos.y > fogTop) {\n if (wPos.y < fogTop) {\n fDeltaY = (fogTop - wPos.y) / fogRange * 2.0;\n fDensityIntegral = fDeltaY * fDeltaY * 0.5;\n }\n else {\n fDeltaY = 0.;\n fDensityIntegral = 0.;\n }\n }\n else {\n if (wPos.y < fogTop) {\n float fDeltaA = (fogTop - cameraPos.y) / fogRange * 2.;\n float fDeltaB = (fogTop - wPos.y) / fogRange * 2.;\n fDeltaY = abs(fDeltaA - fDeltaB);\n fDensityIntegral = abs((fDeltaA * fDeltaA * 0.5) - (fDeltaB * fDeltaB * 0.5));\n }\n else {\n fDeltaY = abs(fogTop - cameraPos.y) / fogRange * 2.;\n fDensityIntegral = abs(fDeltaY * fDeltaY * 0.5);\n }\n }\n float fDensity;\n if (fDeltaY != 0.) {\n fDensity = (sqrt(1.0 + ((fDeltaD / fDeltaY) * (fDeltaD / fDeltaY)))) * fDensityIntegral;\n }\n else {\n fDensity = 0.;\n }\n float f = exp(-fDensity);\n return f;\n }\n#endif\nvoid CC_TRANSFER_FOG_BASE(vec4 pos, out float factor)\n{\n#if CC_USE_FOG == 0\n\tfactor = LinearFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.y);\n#elif CC_USE_FOG == 1\n\tfactor = ExpFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n#elif CC_USE_FOG == 2\n\tfactor = ExpSquaredFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n#elif CC_USE_FOG == 3\n\tfactor = LayeredFog(pos, cc_cameraPos.xyz, cc_fogAdd.x, cc_fogAdd.y, cc_fogAdd.z);\n#else\n\tfactor = 1.0;\n#endif\n}\nvoid CC_APPLY_FOG_BASE(inout vec4 color, float factor) {\n\tcolor = vec4(mix(cc_fogColor.rgb, color.rgb, factor), color.a);\n}\n#if !CC_USE_ACCURATE_FOG\nin mediump float v_fog_factor;\n#endif\nvoid CC_APPLY_FOG(inout vec4 color) {\n#if !CC_USE_ACCURATE_FOG\n CC_APPLY_FOG_BASE(color, v_fog_factor);\n#endif\n}\nvoid CC_APPLY_FOG(inout vec4 color, vec3 worldPos) {\n#if CC_USE_ACCURATE_FOG\n float factor;\n CC_TRANSFER_FOG_BASE(vec4(worldPos, 1.0), factor);\n#else\n float factor = v_fog_factor;\n#endif\n CC_APPLY_FOG_BASE(color, factor);\n}\n#define QUATER_PI 0.78539816340\n#define HALF_PI 1.57079632679\n#define PI 3.14159265359\n#define PI2 6.28318530718\n#define PI4 12.5663706144\n#define INV_QUATER_PI 1.27323954474\n#define INV_HALF_PI 0.63661977237\n#define INV_PI 0.31830988618\n#define INV_PI2 0.15915494309\n#define INV_PI4 0.07957747155\n#define EPSILON 1e-6\n#define EPSILON_LOWP 1e-4\n#define LOG2 1.442695\n#define EXP_VALUE 2.71828183\n#define FP_MAX 65504.0\n#define FP_SCALE 0.0009765625\n#define FP_SCALE_INV 1024.0\n#define GRAY_VECTOR vec3(0.299, 0.587, 0.114)\n#define LIGHT_MAP_TYPE_DISABLED 0\n#define LIGHT_MAP_TYPE_ALL_IN_ONE 1\n#define LIGHT_MAP_TYPE_INDIRECT_OCCLUSION 2\n#define REFLECTION_PROBE_TYPE_NONE 0\n#define REFLECTION_PROBE_TYPE_CUBE 1\n#define REFLECTION_PROBE_TYPE_PLANAR 2\n#define REFLECTION_PROBE_TYPE_BLEND 3\n#define REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX 4\n#define LIGHT_TYPE_DIRECTIONAL 0.0\n#define LIGHT_TYPE_SPHERE 1.0\n#define LIGHT_TYPE_SPOT 2.0\n#define LIGHT_TYPE_POINT 3.0\n#define LIGHT_TYPE_RANGED_DIRECTIONAL 4.0\n#define IS_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_DIRECTIONAL)) < EPSILON_LOWP)\n#define IS_SPHERE_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPHERE)) < EPSILON_LOWP)\n#define IS_SPOT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPOT)) < EPSILON_LOWP)\n#define IS_POINT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_POINT)) < EPSILON_LOWP)\n#define IS_RANGED_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_RANGED_DIRECTIONAL)) < EPSILON_LOWP)\n#define TONE_MAPPING_ACES 0\n#define TONE_MAPPING_LINEAR 1\n#define SURFACES_MAX_TRANSMIT_DEPTH_VALUE 999999.0\n#ifndef CC_SURFACES_DEBUG_VIEW_SINGLE\n #define CC_SURFACES_DEBUG_VIEW_SINGLE 1\n#endif\n#ifndef CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC\n #define CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC 2\n#endif\nvec3 SRGBToLinear (vec3 gamma) {\n#ifdef CC_USE_SURFACE_SHADER\n #if CC_USE_DEBUG_VIEW == CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC && CC_SURFACES_ENABLE_DEBUG_VIEW\n if (!IS_DEBUG_VIEW_COMPOSITE_ENABLE_GAMMA_CORRECTION) {\n return gamma;\n }\n #endif\n#endif\n return gamma * gamma;\n}\nvec3 LinearToSRGB(vec3 linear) {\n#ifdef CC_USE_SURFACE_SHADER\n #if CC_USE_DEBUG_VIEW == CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC && CC_SURFACES_ENABLE_DEBUG_VIEW\n if (!IS_DEBUG_VIEW_COMPOSITE_ENABLE_GAMMA_CORRECTION) {\n return linear;\n }\n #endif\n#endif\n return sqrt(linear);\n}\nlayout(std140) uniform CCShadow {\n highp mat4 cc_matLightView;\n highp mat4 cc_matLightViewProj;\n highp vec4 cc_shadowInvProjDepthInfo;\n highp vec4 cc_shadowProjDepthInfo;\n highp vec4 cc_shadowProjInfo;\n mediump vec4 cc_shadowNFLSInfo;\n mediump vec4 cc_shadowWHPBInfo;\n mediump vec4 cc_shadowLPNNInfo;\n lowp vec4 cc_shadowColor;\n mediump vec4 cc_planarNDInfo;\n};\n#if CC_SUPPORT_CASCADED_SHADOW_MAP\n layout(std140) uniform CCCSM {\n highp vec4 cc_csmViewDir0[4];\n highp vec4 cc_csmViewDir1[4];\n highp vec4 cc_csmViewDir2[4];\n highp vec4 cc_csmAtlas[4];\n highp mat4 cc_matCSMViewProj[4];\n highp vec4 cc_csmProjDepthInfo[4];\n highp vec4 cc_csmProjInfo[4];\n highp vec4 cc_csmSplitsInfo;\n };\n#endif\n#if defined(CC_USE_METAL) || defined(CC_USE_WGPU)\n#define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y) y = -y\n#else\n#define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y)\n#endif\nvec2 GetPlanarReflectScreenUV(vec3 worldPos, mat4 matVirtualCameraViewProj, float flipNDCSign, vec3 viewDir, vec3 reflectDir)\n{\n vec4 clipPos = matVirtualCameraViewProj * vec4(worldPos, 1.0);\n vec2 screenUV = clipPos.xy / clipPos.w * 0.5 + 0.5;\n screenUV = vec2(1.0 - screenUV.x, screenUV.y);\n screenUV = flipNDCSign == 1.0 ? vec2(screenUV.x, 1.0 - screenUV.y) : screenUV;\n return screenUV;\n}\nvec3 RotationVecFromAxisY(vec3 v, float cosTheta, float sinTheta)\n{\n vec3 result;\n result.x = dot(v, vec3(cosTheta, 0.0, -sinTheta));\n result.y = v.y;\n result.z = dot(v, vec3(sinTheta, 0.0, cosTheta));\n return result;\n}\nvec3 RotationVecFromAxisY(vec3 v, float rotateAngleArc)\n{\n return RotationVecFromAxisY(v, cos(rotateAngleArc), sin(rotateAngleArc));\n}\n#if CC_RECEIVE_SHADOW\n uniform highp sampler2D cc_shadowMap;\n uniform highp sampler2D cc_spotShadowMap;\n #define UnpackBitFromFloat(value, bit) (mod(floor(value / pow(10.0, float(bit))), 10.0) > 0.0)\n highp float unpackHighpData (float mainPart, float modPart) {\n highp float data = mainPart;\n return data + modPart;\n }\n void packHighpData (out float mainPart, out float modPart, highp float data) {\n mainPart = fract(data);\n modPart = data - mainPart;\n }\n highp float unpackHighpData (float mainPart, float modPart, const float modValue) {\n highp float data = mainPart * modValue;\n return data + modPart * modValue;\n }\n void packHighpData (out float mainPart, out float modPart, highp float data, const float modValue) {\n highp float divide = data / modValue;\n mainPart = floor(divide);\n modPart = (data - mainPart * modValue) / modValue;\n }\n highp vec2 unpackHighpData (vec2 mainPart, vec2 modPart) {\n highp vec2 data = mainPart;\n return data + modPart;\n }\n void packHighpData (out vec2 mainPart, out vec2 modPart, highp vec2 data) {\n mainPart = fract(data);\n modPart = data - mainPart;\n }\n highp vec2 unpackHighpData (vec2 mainPart, vec2 modPart, const float modValue) {\n highp vec2 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n void packHighpData (out vec2 mainPart, out vec2 modPart, highp vec2 data, const float modValue) {\n highp vec2 divide = data / modValue;\n mainPart = floor(divide);\n modPart = (data - mainPart * modValue) / modValue;\n }\n highp vec3 unpackHighpData (vec3 mainPart, vec3 modPart) {\n highp vec3 data = mainPart;\n return data + modPart;\n }\n void packHighpData (out vec3 mainPart, out vec3 modPart, highp vec3 data) {\n mainPart = fract(data);\n modPart = data - mainPart;\n }\n highp vec3 unpackHighpData (vec3 mainPart, vec3 modPart, const float modValue) {\n highp vec3 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n void packHighpData (out vec3 mainPart, out vec3 modPart, highp vec3 data, const float modValue) {\n highp vec3 divide = data / modValue;\n mainPart = floor(divide);\n modPart = (data - mainPart * modValue) / modValue;\n }\n highp vec4 unpackHighpData (vec4 mainPart, vec4 modPart) {\n highp vec4 data = mainPart;\n return data + modPart;\n }\n void packHighpData (out vec4 mainPart, out vec4 modPart, highp vec4 data) {\n mainPart = fract(data);\n modPart = data - mainPart;\n }\n highp vec4 unpackHighpData (vec4 mainPart, vec4 modPart, const float modValue) {\n highp vec4 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n void packHighpData (out vec4 mainPart, out vec4 modPart, highp vec4 data, const float modValue) {\n highp vec4 divide = data / modValue;\n mainPart = floor(divide);\n modPart = (data - mainPart * modValue) / modValue;\n }\n float NativePCFShadowFactorHard (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n #if CC_SHADOWMAP_FORMAT == 1\n return step(shadowNDCPos.z, dot(texture(shadowMap, shadowNDCPos.xy), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n return step(shadowNDCPos.z, texture(shadowMap, shadowNDCPos.xy).x);\n #endif\n }\n float NativePCFShadowFactorSoft (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n vec2 shadowNDCPos_offset = shadowNDCPos.xy + oneTap;\n float block0, block1, block2, block3;\n #if CC_SHADOWMAP_FORMAT == 1\n block0 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block1 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos_offset.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block0 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)).x);\n block1 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos.y)).x);\n block2 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset.y)).x);\n block3 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos_offset.y)).x);\n #endif\n float coefX = mod(shadowNDCPos.x, oneTap.x) * shadowMapResolution.x;\n float resultX = mix(block0, block1, coefX);\n float resultY = mix(block2, block3, coefX);\n float coefY = mod(shadowNDCPos.y, oneTap.y) * shadowMapResolution.y;\n return mix(resultX, resultY, coefY);\n }\n float NativePCFShadowFactorSoft3X (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n float shadowNDCPos_offset_L = shadowNDCPos.x - oneTap.x;\n float shadowNDCPos_offset_R = shadowNDCPos.x + oneTap.x;\n float shadowNDCPos_offset_U = shadowNDCPos.y - oneTap.y;\n float shadowNDCPos_offset_D = shadowNDCPos.y + oneTap.y;\n float block0, block1, block2, block3, block4, block5, block6, block7, block8;\n #if CC_SHADOWMAP_FORMAT == 1\n block0 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block1 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block4 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block5 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block6 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block7 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block8 = step(shadowNDCPos.z, dot(texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block0 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_U)).x);\n block1 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_U)).x);\n block2 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_U)).x);\n block3 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos.y)).x);\n block4 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)).x);\n block5 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos.y)).x);\n block6 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_D)).x);\n block7 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_D)).x);\n block8 = step(shadowNDCPos.z, texture(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_D)).x);\n #endif\n float coefX = mod(shadowNDCPos.x, oneTap.x) * shadowMapResolution.x;\n float coefY = mod(shadowNDCPos.y, oneTap.y) * shadowMapResolution.y;\n float shadow = 0.0;\n float resultX = mix(block0, block1, coefX);\n float resultY = mix(block3, block4, coefX);\n shadow += mix(resultX , resultY, coefY);\n resultX = mix(block1, block2, coefX);\n resultY = mix(block4, block5, coefX);\n shadow += mix(resultX , resultY, coefY);\n resultX = mix(block3, block4, coefX);\n resultY = mix(block6, block7, coefX);\n shadow += mix(resultX, resultY, coefY);\n resultX = mix(block4, block5, coefX);\n resultY = mix(block7, block8, coefX);\n shadow += mix(resultX, resultY, coefY);\n return shadow * 0.25;\n }\n float NativePCFShadowFactorSoft5X (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n vec2 twoTap = oneTap * 2.0;\n vec2 offset1 = shadowNDCPos.xy + vec2(-twoTap.x, -twoTap.y);\n vec2 offset2 = shadowNDCPos.xy + vec2(-oneTap.x, -twoTap.y);\n vec2 offset3 = shadowNDCPos.xy + vec2(0.0, -twoTap.y);\n vec2 offset4 = shadowNDCPos.xy + vec2(oneTap.x, -twoTap.y);\n vec2 offset5 = shadowNDCPos.xy + vec2(twoTap.x, -twoTap.y);\n vec2 offset6 = shadowNDCPos.xy + vec2(-twoTap.x, -oneTap.y);\n vec2 offset7 = shadowNDCPos.xy + vec2(-oneTap.x, -oneTap.y);\n vec2 offset8 = shadowNDCPos.xy + vec2(0.0, -oneTap.y);\n vec2 offset9 = shadowNDCPos.xy + vec2(oneTap.x, -oneTap.y);\n vec2 offset10 = shadowNDCPos.xy + vec2(twoTap.x, -oneTap.y);\n vec2 offset11 = shadowNDCPos.xy + vec2(-twoTap.x, 0.0);\n vec2 offset12 = shadowNDCPos.xy + vec2(-oneTap.x, 0.0);\n vec2 offset13 = shadowNDCPos.xy + vec2(0.0, 0.0);\n vec2 offset14 = shadowNDCPos.xy + vec2(oneTap.x, 0.0);\n vec2 offset15 = shadowNDCPos.xy + vec2(twoTap.x, 0.0);\n vec2 offset16 = shadowNDCPos.xy + vec2(-twoTap.x, oneTap.y);\n vec2 offset17 = shadowNDCPos.xy + vec2(-oneTap.x, oneTap.y);\n vec2 offset18 = shadowNDCPos.xy + vec2(0.0, oneTap.y);\n vec2 offset19 = shadowNDCPos.xy + vec2(oneTap.x, oneTap.y);\n vec2 offset20 = shadowNDCPos.xy + vec2(twoTap.x, oneTap.y);\n vec2 offset21 = shadowNDCPos.xy + vec2(-twoTap.x, twoTap.y);\n vec2 offset22 = shadowNDCPos.xy + vec2(-oneTap.x, twoTap.y);\n vec2 offset23 = shadowNDCPos.xy + vec2(0.0, twoTap.y);\n vec2 offset24 = shadowNDCPos.xy + vec2(oneTap.x, twoTap.y);\n vec2 offset25 = shadowNDCPos.xy + vec2(twoTap.x, twoTap.y);\n float block1, block2, block3, block4, block5, block6, block7, block8, block9, block10, block11, block12, block13, block14, block15, block16, block17, block18, block19, block20, block21, block22, block23, block24, block25;\n #if CC_SHADOWMAP_FORMAT == 1\n block1 = step(shadowNDCPos.z, dot(texture(shadowMap, offset1), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture(shadowMap, offset2), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture(shadowMap, offset3), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block4 = step(shadowNDCPos.z, dot(texture(shadowMap, offset4), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block5 = step(shadowNDCPos.z, dot(texture(shadowMap, offset5), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block6 = step(shadowNDCPos.z, dot(texture(shadowMap, offset6), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block7 = step(shadowNDCPos.z, dot(texture(shadowMap, offset7), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block8 = step(shadowNDCPos.z, dot(texture(shadowMap, offset8), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block9 = step(shadowNDCPos.z, dot(texture(shadowMap, offset9), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block10 = step(shadowNDCPos.z, dot(texture(shadowMap, offset10), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block11 = step(shadowNDCPos.z, dot(texture(shadowMap, offset11), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block12 = step(shadowNDCPos.z, dot(texture(shadowMap, offset12), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block13 = step(shadowNDCPos.z, dot(texture(shadowMap, offset13), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block14 = step(shadowNDCPos.z, dot(texture(shadowMap, offset14), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block15 = step(shadowNDCPos.z, dot(texture(shadowMap, offset15), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block16 = step(shadowNDCPos.z, dot(texture(shadowMap, offset16), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block17 = step(shadowNDCPos.z, dot(texture(shadowMap, offset17), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block18 = step(shadowNDCPos.z, dot(texture(shadowMap, offset18), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block19 = step(shadowNDCPos.z, dot(texture(shadowMap, offset19), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block20 = step(shadowNDCPos.z, dot(texture(shadowMap, offset20), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block21 = step(shadowNDCPos.z, dot(texture(shadowMap, offset21), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block22 = step(shadowNDCPos.z, dot(texture(shadowMap, offset22), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block23 = step(shadowNDCPos.z, dot(texture(shadowMap, offset23), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block24 = step(shadowNDCPos.z, dot(texture(shadowMap, offset24), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block25 = step(shadowNDCPos.z, dot(texture(shadowMap, offset25), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block1 = step(shadowNDCPos.z, texture(shadowMap, offset1).x);\n block2 = step(shadowNDCPos.z, texture(shadowMap, offset2).x);\n block3 = step(shadowNDCPos.z, texture(shadowMap, offset3).x);\n block4 = step(shadowNDCPos.z, texture(shadowMap, offset4).x);\n block5 = step(shadowNDCPos.z, texture(shadowMap, offset5).x);\n block6 = step(shadowNDCPos.z, texture(shadowMap, offset6).x);\n block7 = step(shadowNDCPos.z, texture(shadowMap, offset7).x);\n block8 = step(shadowNDCPos.z, texture(shadowMap, offset8).x);\n block9 = step(shadowNDCPos.z, texture(shadowMap, offset9).x);\n block10 = step(shadowNDCPos.z, texture(shadowMap, offset10).x);\n block11 = step(shadowNDCPos.z, texture(shadowMap, offset11).x);\n block12 = step(shadowNDCPos.z, texture(shadowMap, offset12).x);\n block13 = step(shadowNDCPos.z, texture(shadowMap, offset13).x);\n block14 = step(shadowNDCPos.z, texture(shadowMap, offset14).x);\n block15 = step(shadowNDCPos.z, texture(shadowMap, offset15).x);\n block16 = step(shadowNDCPos.z, texture(shadowMap, offset16).x);\n block17 = step(shadowNDCPos.z, texture(shadowMap, offset17).x);\n block18 = step(shadowNDCPos.z, texture(shadowMap, offset18).x);\n block19 = step(shadowNDCPos.z, texture(shadowMap, offset19).x);\n block20 = step(shadowNDCPos.z, texture(shadowMap, offset20).x);\n block21 = step(shadowNDCPos.z, texture(shadowMap, offset21).x);\n block22 = step(shadowNDCPos.z, texture(shadowMap, offset22).x);\n block23 = step(shadowNDCPos.z, texture(shadowMap, offset23).x);\n block24 = step(shadowNDCPos.z, texture(shadowMap, offset24).x);\n block25 = step(shadowNDCPos.z, texture(shadowMap, offset25).x);\n #endif\n vec2 coef = fract(shadowNDCPos.xy * shadowMapResolution);\n vec2 v1X1 = mix(vec2(block1, block6), vec2(block2, block7), coef.xx);\n vec2 v1X2 = mix(vec2(block2, block7), vec2(block3, block8), coef.xx);\n vec2 v1X3 = mix(vec2(block3, block8), vec2(block4, block9), coef.xx);\n vec2 v1X4 = mix(vec2(block4, block9), vec2(block5, block10), coef.xx);\n float v1 = mix(v1X1.x, v1X1.y, coef.y) + mix(v1X2.x, v1X2.y, coef.y) + mix(v1X3.x, v1X3.y, coef.y) + mix(v1X4.x, v1X4.y, coef.y);\n vec2 v2X1 = mix(vec2(block6, block11), vec2(block7, block12), coef.xx);\n vec2 v2X2 = mix(vec2(block7, block12), vec2(block8, block13), coef.xx);\n vec2 v2X3 = mix(vec2(block8, block13), vec2(block9, block14), coef.xx);\n vec2 v2X4 = mix(vec2(block9, block14), vec2(block10, block15), coef.xx);\n float v2 = mix(v2X1.x, v2X1.y, coef.y) + mix(v2X2.x, v2X2.y, coef.y) + mix(v2X3.x, v2X3.y, coef.y) + mix(v2X4.x, v2X4.y, coef.y);\n vec2 v3X1 = mix(vec2(block11, block16), vec2(block12, block17), coef.xx);\n vec2 v3X2 = mix(vec2(block12, block17), vec2(block13, block18), coef.xx);\n vec2 v3X3 = mix(vec2(block13, block18), vec2(block14, block19), coef.xx);\n vec2 v3X4 = mix(vec2(block14, block19), vec2(block15, block20), coef.xx);\n float v3 = mix(v3X1.x, v3X1.y, coef.y) + mix(v3X2.x, v3X2.y, coef.y) + mix(v3X3.x, v3X3.y, coef.y) + mix(v3X4.x, v3X4.y, coef.y);\n vec2 v4X1 = mix(vec2(block16, block21), vec2(block17, block22), coef.xx);\n vec2 v4X2 = mix(vec2(block17, block22), vec2(block18, block23), coef.xx);\n vec2 v4X3 = mix(vec2(block18, block23), vec2(block19, block24), coef.xx);\n vec2 v4X4 = mix(vec2(block19, block24), vec2(block20, block25), coef.xx);\n float v4 = mix(v4X1.x, v4X1.y, coef.y) + mix(v4X2.x, v4X2.y, coef.y) + mix(v4X3.x, v4X3.y, coef.y) + mix(v4X4.x, v4X4.y, coef.y);\n float fAvg = (v1 + v2 + v3 + v4) * 0.0625;\n return fAvg;\n }\n bool GetShadowNDCPos(out vec3 shadowNDCPos, vec4 shadowPosWithDepthBias)\n {\n \tshadowNDCPos = shadowPosWithDepthBias.xyz / shadowPosWithDepthBias.w * 0.5 + 0.5;\n \tif (shadowNDCPos.x < 0.0 || shadowNDCPos.x > 1.0 ||\n \t\tshadowNDCPos.y < 0.0 || shadowNDCPos.y > 1.0 ||\n \t\tshadowNDCPos.z < 0.0 || shadowNDCPos.z > 1.0) {\n \t\treturn false;\n \t}\n \tshadowNDCPos.xy = cc_cameraPos.w == 1.0 ? vec2(shadowNDCPos.xy.x, 1.0 - shadowNDCPos.xy.y) : shadowNDCPos.xy;\n \treturn true;\n }\n vec4 ApplyShadowDepthBias_FaceNormal(vec4 shadowPos, vec3 worldNormal, float normalBias, vec3 matViewDir0, vec3 matViewDir1, vec3 matViewDir2, vec2 projScaleXY)\n {\n vec4 newShadowPos = shadowPos;\n if (normalBias > EPSILON_LOWP)\n {\n vec3 viewNormal = vec3(dot(matViewDir0, worldNormal), dot(matViewDir1, worldNormal), dot(matViewDir2, worldNormal));\n if (viewNormal.z < 0.1)\n newShadowPos.xy += viewNormal.xy * projScaleXY * normalBias * clamp(viewNormal.z, 0.001, 0.1);\n }\n return newShadowPos;\n }\n vec4 ApplyShadowDepthBias_FaceNormal(vec4 shadowPos, vec3 worldNormal, float normalBias, mat4 matLightView, vec2 projScaleXY)\n {\n \tvec4 newShadowPos = shadowPos;\n \tif (normalBias > EPSILON_LOWP)\n \t{\n \t\tvec4 viewNormal = matLightView * vec4(worldNormal, 0.0);\n \t\tif (viewNormal.z < 0.1)\n \t\t\tnewShadowPos.xy += viewNormal.xy * projScaleXY * normalBias * clamp(viewNormal.z, 0.001, 0.1);\n \t}\n \treturn newShadowPos;\n }\n float GetViewSpaceDepthFromNDCDepth_Orthgraphic(float NDCDepth, float projScaleZ, float projBiasZ)\n {\n \treturn (NDCDepth - projBiasZ) / projScaleZ;\n }\n vec4 ApplyShadowDepthBias_Orthographic(vec4 shadowPos, float viewspaceDepthBias, float projScaleZ, float projBiasZ)\n {\n \tfloat coeffA = projScaleZ;\n \tfloat coeffB = projBiasZ;\n \tfloat viewSpacePos_z = GetViewSpaceDepthFromNDCDepth_Orthgraphic(shadowPos.z, projScaleZ, projBiasZ);\n \tviewSpacePos_z += viewspaceDepthBias;\n \tvec4 result = shadowPos;\n \tresult.z = viewSpacePos_z * coeffA + coeffB;\n \treturn result;\n }\n float CCGetDirLightShadowFactorHard (vec4 shadowPosWithDepthBias) {\n\t vec3 shadowNDCPos;\n\t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n\t\t return 1.0;\n\t }\n return NativePCFShadowFactorHard(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft (vec4 shadowPosWithDepthBias) {\n\t vec3 shadowNDCPos;\n\t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n\t\t return 1.0;\n\t }\n return NativePCFShadowFactorSoft(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft3X (vec4 shadowPosWithDepthBias) {\n\t vec3 shadowNDCPos;\n\t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n\t\t return 1.0;\n\t }\n return NativePCFShadowFactorSoft3X(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft5X (vec4 shadowPosWithDepthBias) {\n\t vec3 shadowNDCPos;\n\t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n\t\t return 1.0;\n\t }\n return NativePCFShadowFactorSoft5X(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCShadowFactorBase(out vec4 shadowPosWithDepthBias, vec4 shadowPos, vec3 N, vec2 shadowBias)\n {\n vec4 pos = ApplyShadowDepthBias_FaceNormal(shadowPos, N, shadowBias.y, cc_matLightView, cc_shadowProjInfo.xy);\n pos = ApplyShadowDepthBias_Orthographic(pos, shadowBias.x, cc_shadowProjDepthInfo.x, cc_shadowProjDepthInfo.y);\n float realtimeShadow = 1.0;\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n realtimeShadow = CCGetDirLightShadowFactorSoft5X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n realtimeShadow = CCGetDirLightShadowFactorSoft3X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n realtimeShadow = CCGetDirLightShadowFactorSoft(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n realtimeShadow = CCGetDirLightShadowFactorHard(pos);\n #endif\n shadowPosWithDepthBias = pos;\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n }\n #if CC_SUPPORT_CASCADED_SHADOW_MAP\n bool CCGetCSMLevelWithTransition(out highp float ratio, vec3 clipPos) {\n highp float maxRange = 1.0 - cc_csmSplitsInfo.x;\n highp float minRange = cc_csmSplitsInfo.x;\n highp float thresholdInvert = 1.0 / cc_csmSplitsInfo.x;\n ratio = 0.0;\n if (clipPos.x <= minRange) {\n ratio = clipPos.x * thresholdInvert;\n return true;\n }\n if (clipPos.x >= maxRange) {\n ratio = 1.0 - (clipPos.x - maxRange) * thresholdInvert;\n return true;\n }\n if (clipPos.y <= minRange) {\n ratio = clipPos.y * thresholdInvert;\n return true;\n }\n if (clipPos.y >= maxRange) {\n ratio = 1.0 - (clipPos.y - maxRange) * thresholdInvert;\n return true;\n }\n return false;\n }\n bool CCHasCSMLevel(int level, vec3 worldPos) {\n highp float layerThreshold = cc_csmViewDir0[0].w;\n bool hasLevel = false;\n for (int i = 0; i < 4; i++) {\n if (i == level) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0) {\n hasLevel = true;\n }\n }\n }\n return hasLevel;\n }\n void CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos, int level) {\n highp float layerThreshold = cc_csmViewDir0[0].w;\n for (int i = 0; i < 4; i++) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0 && i == level) {\n csmPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n csmPos.xy = csmPos.xy * cc_csmAtlas[i].xy + cc_csmAtlas[i].zw;\n shadowProjDepthInfo = cc_csmProjDepthInfo[i];\n shadowProjInfo = cc_csmProjInfo[i];\n shadowViewDir0 = cc_csmViewDir0[i].xyz;\n shadowViewDir1 = cc_csmViewDir1[i].xyz;\n shadowViewDir2 = cc_csmViewDir2[i].xyz;\n }\n }\n }\n int CCGetCSMLevel(out bool isTransitionArea, out highp float transitionRatio, out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos)\n {\n int level = -1;\n highp float layerThreshold = cc_csmViewDir0[0].w;\n for (int i = 0; i < 4; i++) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0 && level < 0) {\n #if CC_CASCADED_LAYERS_TRANSITION\n isTransitionArea = CCGetCSMLevelWithTransition(transitionRatio, clipPos);\n #endif\n csmPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n csmPos.xy = csmPos.xy * cc_csmAtlas[i].xy + cc_csmAtlas[i].zw;\n shadowProjDepthInfo = cc_csmProjDepthInfo[i];\n shadowProjInfo = cc_csmProjInfo[i];\n shadowViewDir0 = cc_csmViewDir0[i].xyz;\n shadowViewDir1 = cc_csmViewDir1[i].xyz;\n shadowViewDir2 = cc_csmViewDir2[i].xyz;\n level = i;\n }\n }\n return level;\n }\n int CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos)\n {\n bool isTransitionArea = false;\n highp float transitionRatio = 0.0;\n return CCGetCSMLevel(isTransitionArea, transitionRatio, csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n }\n float CCCSMFactorBase(out vec4 csmPos, out vec4 csmPosWithBias, vec3 worldPos, vec3 N, vec2 shadowBias)\n {\n bool isTransitionArea = false;\n highp float ratio = 0.0;\n csmPos = vec4(1.0);\n vec4 shadowProjDepthInfo, shadowProjInfo;\n vec3 shadowViewDir0, shadowViewDir1, shadowViewDir2;\n int level = -1;\n #if CC_CASCADED_LAYERS_TRANSITION\n level = CCGetCSMLevel(isTransitionArea, ratio, csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n #else\n level = CCGetCSMLevel(csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n #endif\n if (level < 0) { return 1.0; }\n vec4 pos = ApplyShadowDepthBias_FaceNormal(csmPos, N, shadowBias.y, shadowViewDir0, shadowViewDir1, shadowViewDir2, shadowProjInfo.xy);\n pos = ApplyShadowDepthBias_Orthographic(pos, shadowBias.x, shadowProjDepthInfo.x, shadowProjDepthInfo.y);\n csmPosWithBias = pos;\n float realtimeShadow = 1.0;\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n realtimeShadow = CCGetDirLightShadowFactorSoft5X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n realtimeShadow = CCGetDirLightShadowFactorSoft3X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n realtimeShadow = CCGetDirLightShadowFactorSoft(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n realtimeShadow = CCGetDirLightShadowFactorHard(pos);\n #endif\n #if CC_CASCADED_LAYERS_TRANSITION\n vec4 nextCSMPos = vec4(1.0);\n vec4 nextShadowProjDepthInfo, nextShadowProjInfo;\n vec3 nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2;\n float nextRealtimeShadow = 1.0;\n CCGetCSMLevel(nextCSMPos, nextShadowProjDepthInfo, nextShadowProjInfo, nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2, worldPos, level + 1);\n bool hasNextLevel = CCHasCSMLevel(level + 1, worldPos);\n if (hasNextLevel && isTransitionArea) {\n vec4 nexPos = ApplyShadowDepthBias_FaceNormal(nextCSMPos, N, shadowBias.y, nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2, nextShadowProjInfo.xy);\n nexPos = ApplyShadowDepthBias_Orthographic(nexPos, shadowBias.x, nextShadowProjDepthInfo.x, nextShadowProjDepthInfo.y);\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft5X(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft3X(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n nextRealtimeShadow = CCGetDirLightShadowFactorHard(nexPos);\n #endif\n return mix(mix(nextRealtimeShadow, realtimeShadow, ratio), 1.0, cc_shadowNFLSInfo.w);\n }\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n #else\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n #endif\n }\n #else\n int CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos) {\n return -1;\n }\n float CCCSMFactorBase(out vec4 csmPos, out vec4 csmPosWithBias, vec3 worldPos, vec3 N, vec2 shadowBias) {\n csmPos = cc_matLightViewProj * vec4(worldPos, 1.0);\n return CCShadowFactorBase(csmPosWithBias, csmPos, N, shadowBias);\n }\n #endif\n float CCShadowFactorBase(vec4 shadowPos, vec3 N, vec2 shadowBias) {\n vec4 shadowPosWithDepthBias;\n return CCShadowFactorBase(shadowPosWithDepthBias, shadowPos, N, shadowBias);\n }\n float CCCSMFactorBase(vec3 worldPos, vec3 N, vec2 shadowBias) {\n vec4 csmPos, csmPosWithBias;\n return CCCSMFactorBase(csmPos, csmPosWithBias, worldPos, N, shadowBias);\n }\n#endif\nhighp float decode32 (highp vec4 rgba) {\n rgba = rgba * 255.0;\n highp float Sign = 1.0 - (step(128.0, (rgba[3]) + 0.5)) * 2.0;\n highp float Exponent = 2.0 * (mod(float(int((rgba[3]) + 0.5)), 128.0)) + (step(128.0, (rgba[2]) + 0.5)) - 127.0;\n highp float Mantissa = (mod(float(int((rgba[2]) + 0.5)), 128.0)) * 65536.0 + rgba[1] * 256.0 + rgba[0] + 8388608.0;\n return Sign * exp2(Exponent - 23.0) * Mantissa;\n}\nvec4 packRGBE (vec3 rgb) {\n highp float maxComp = max(max(rgb.r, rgb.g), rgb.b);\n highp float e = 128.0;\n if (maxComp > 0.0001) {\n e = log(maxComp) / log(1.1);\n e = ceil(e);\n e = clamp(e + 128.0, 0.0, 255.0);\n }\n highp float sc = 1.0 / pow(1.1, e - 128.0);\n vec3 encode = clamp(rgb * sc, vec3(0.0), vec3(1.0)) * 255.0;\n vec3 encode_rounded = floor(encode) + step(encode - floor(encode), vec3(0.5));\n return vec4(encode_rounded, e) / 255.0;\n}\nvec3 unpackRGBE (vec4 rgbe) {\n return rgbe.rgb * pow(1.1, rgbe.a * 255.0 - 128.0);\n}\nvec4 fragTextureLod (sampler2D tex, vec2 coord, float lod) {\n return textureLod(tex, coord, lod);\n}\nvec4 fragTextureLod (samplerCube tex, vec3 coord, float lod) {\n return textureLod(tex, coord, lod);\n}\nuniform samplerCube cc_environment;\nvec3 CalculateReflectDirection(vec3 N, vec3 V, float NoV)\n{\n float sideSign = NoV < 0.0 ? -1.0 : 1.0;\n N *= sideSign;\n return reflect(-V, N);\n}\nvec3 CalculatePlanarReflectPositionOnPlane(vec3 N, vec3 V, vec3 worldPos, vec4 plane, vec3 cameraPos, float probeReflectedDepth)\n{\n float distPixelToPlane = -dot(plane, vec4(worldPos, 1.0));\n plane.w += distPixelToPlane;\n float distCameraToPlane = abs(-dot(plane, vec4(cameraPos, 1.0)));\n vec3 planeN = plane.xyz;\n vec3 virtualCameraPos = cameraPos - 2.0 * distCameraToPlane * planeN;\n vec3 bumpedR = normalize(reflect(-V, N));\n vec3 reflectedPointPos = worldPos + probeReflectedDepth * bumpedR;\n vec3 virtualCameraToReflectedPoint = normalize(reflectedPointPos - virtualCameraPos);\n float y = distCameraToPlane / max(EPSILON_LOWP, dot(planeN, virtualCameraToReflectedPoint));\n return virtualCameraPos + y * virtualCameraToReflectedPoint;\n}\nvec4 CalculateBoxProjectedDirection(vec3 R, vec3 worldPos, vec3 cubeCenterPos, vec3 cubeBoxHalfSize)\n{\n vec3 W = worldPos - cubeCenterPos;\n vec3 projectedLength = (sign(R) * cubeBoxHalfSize - W) / (R + vec3(EPSILON));\n float len = min(min(projectedLength.x, projectedLength.y), projectedLength.z);\n vec3 P = W + len * R;\n float weight = len < 0.0 ? 0.0 : 1.0;\n return vec4(P, weight);\n}\n#if CC_USE_IBL\n #if CC_USE_DIFFUSEMAP\n uniform samplerCube cc_diffuseMap;\n #endif\n#endif\n#if CC_USE_REFLECTION_PROBE\n uniform samplerCube cc_reflectionProbeCubemap;\n uniform sampler2D cc_reflectionProbePlanarMap;\n uniform sampler2D cc_reflectionProbeDataMap;\n uniform samplerCube cc_reflectionProbeBlendCubemap;\n layout(std140) uniform CCLocal {\n highp mat4 cc_matWorld;\n highp mat4 cc_matWorldIT;\n highp vec4 cc_lightingMapUVParam;\n highp vec4 cc_localShadowBias;\n highp vec4 cc_reflectionProbeData1;\n highp vec4 cc_reflectionProbeData2;\n highp vec4 cc_reflectionProbeBlendData1;\n highp vec4 cc_reflectionProbeBlendData2;\n };\n vec4 GetTexData(sampler2D dataMap, float dataMapWidth, float x, float uv_y)\n {\n return vec4(\n decode32(texture(dataMap, vec2(((x + 0.5)/dataMapWidth), uv_y))),\n decode32(texture(dataMap, vec2(((x + 1.5)/dataMapWidth), uv_y))),\n decode32(texture(dataMap, vec2(((x + 2.5)/dataMapWidth), uv_y))),\n decode32(texture(dataMap, vec2(((x + 3.5)/dataMapWidth), uv_y)))\n );\n }\n void GetPlanarReflectionProbeData(out vec4 plane, out float planarReflectionDepthScale, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n plane.xyz = texData1.xyz;\n plane.w = texData2.x;\n planarReflectionDepthScale = texData2.y;\n mipCount = texData2.z;\n #else\n plane = cc_reflectionProbeData1;\n planarReflectionDepthScale = cc_reflectionProbeData2.x;\n mipCount = cc_reflectionProbeData2.w;\n #endif\n }\n void GetCubeReflectionProbeData(out vec3 centerPos, out vec3 boxHalfSize, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n centerPos = texData1.xyz;\n boxHalfSize = texData2.xyz;\n mipCount = texData3.x;\n #else\n centerPos = cc_reflectionProbeData1.xyz;\n boxHalfSize = cc_reflectionProbeData2.xyz;\n mipCount = cc_reflectionProbeData2.w;\n #endif\n if (mipCount > 1000.0) mipCount -= 1000.0;\n }\n bool isReflectProbeUsingRGBE(float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n return texData3.x > 1000.0;\n #else\n return cc_reflectionProbeData2.w > 1000.0;\n #endif\n }\n bool isBlendReflectProbeUsingRGBE(float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n return texData3.x > 1000.0;\n #else\n return cc_reflectionProbeBlendData2.w > 1000.0;\n #endif\n }\n void GetBlendCubeReflectionProbeData(out vec3 centerPos, out vec3 boxHalfSize, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n centerPos = texData1.xyz;\n boxHalfSize = texData2.xyz;\n mipCount = texData3.x;\n #else\n centerPos = cc_reflectionProbeBlendData1.xyz;\n boxHalfSize = cc_reflectionProbeBlendData2.xyz;\n mipCount = cc_reflectionProbeBlendData2.w;\n #endif\n if (mipCount > 1000.0) mipCount -= 1000.0;\n }\n#endif\n#if CC_USE_LIGHT_PROBE\n#if CC_USE_LIGHT_PROBE\n #if USE_INSTANCING\n in mediump vec4 v_sh_linear_const_r;\n in mediump vec4 v_sh_linear_const_g;\n in mediump vec4 v_sh_linear_const_b;\n #else\n layout(std140) uniform CCSH {\n vec4 cc_sh_linear_const_r;\n vec4 cc_sh_linear_const_g;\n vec4 cc_sh_linear_const_b;\n vec4 cc_sh_quadratic_r;\n vec4 cc_sh_quadratic_g;\n vec4 cc_sh_quadratic_b;\n vec4 cc_sh_quadratic_a;\n };\n #endif\n #if CC_USE_LIGHT_PROBE\n vec3 SHEvaluate(vec3 normal)\n {\n vec3 result;\n #if USE_INSTANCING\n vec4 normal4 = vec4(normal, 1.0);\n result.r = dot(v_sh_linear_const_r, normal4);\n result.g = dot(v_sh_linear_const_g, normal4);\n result.b = dot(v_sh_linear_const_b, normal4);\n #else\n vec4 normal4 = vec4(normal, 1.0);\n result.r = dot(cc_sh_linear_const_r, normal4);\n result.g = dot(cc_sh_linear_const_g, normal4);\n result.b = dot(cc_sh_linear_const_b, normal4);\n vec4 n14 = normal.xyzz * normal.yzzx;\n float n5 = normal.x * normal.x - normal.y * normal.y;\n result.r += dot(cc_sh_quadratic_r, n14);\n result.g += dot(cc_sh_quadratic_g, n14);\n result.b += dot(cc_sh_quadratic_b, n14);\n result += (cc_sh_quadratic_a.rgb * n5);\n #endif\n #if CC_USE_HDR\n result *= cc_exposure.w * cc_exposure.x;\n #endif\n return result;\n }\n #endif\n#endif\n#endif\nfloat GGXMobile (float roughness, float NoH, vec3 H, vec3 N) {\n vec3 NxH = cross(N, H);\n float OneMinusNoHSqr = dot(NxH, NxH);\n float a = roughness * roughness;\n float n = NoH * a;\n float p = a / max(EPSILON, OneMinusNoHSqr + n * n);\n return p * p;\n}\nfloat CalcSpecular (float roughness, float NoH, vec3 H, vec3 N) {\n return (roughness * 0.25 + 0.25) * GGXMobile(roughness, NoH, H, N);\n}\nvec3 BRDFApprox (vec3 specular, float roughness, float NoV) {\n const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);\n const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);\n vec4 r = roughness * c0 + c1;\n float a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y;\n vec2 AB = vec2(-1.04, 1.04) * a004 + r.zw;\n AB.y *= clamp(50.0 * specular.g, 0.0, 1.0);\n return max(vec3(0.0), specular * AB.x + AB.y);\n}\n#if USE_REFLECTION_DENOISE\n vec3 GetEnvReflectionWithMipFiltering(vec3 R, float roughness, float mipCount, float denoiseIntensity, vec2 screenUV) {\n #if CC_USE_IBL\n \tfloat mip = roughness * (mipCount - 1.0);\n \tfloat delta = (dot(dFdx(R), dFdy(R))) * 1000.0;\n \tfloat mipBias = mix(0.0, 5.0, clamp(delta, 0.0, 1.0));\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_CUBE\n vec4 biased = fragTextureLod(cc_reflectionProbeCubemap, R, mip + mipBias);\n \t vec4 filtered = texture(cc_reflectionProbeCubemap, R);\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_PLANAR\n vec4 biased = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, mip + mipBias);\n vec4 filtered = texture(cc_reflectionProbePlanarMap, screenUV);\n #else\n vec4 biased = fragTextureLod(cc_environment, R, mip + mipBias);\n \t vec4 filtered = texture(cc_environment, R);\n #endif\n #if CC_USE_IBL == 2 || CC_USE_REFLECTION_PROBE != REFLECTION_PROBE_TYPE_NONE\n biased.rgb = unpackRGBE(biased);\n \tfiltered.rgb = unpackRGBE(filtered);\n #else\n \tbiased.rgb = SRGBToLinear(biased.rgb);\n \tfiltered.rgb = SRGBToLinear(filtered.rgb);\n #endif\n return mix(biased.rgb, filtered.rgb, denoiseIntensity);\n #else\n return vec3(0.0, 0.0, 0.0);\n #endif\n }\n#endif\nstruct StandardSurface {\n vec4 albedo;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n vec3 position, position_fract_part;\n #else\n vec3 position;\n #endif\n vec3 normal;\n vec3 emissive;\n vec4 lightmap;\n float lightmap_test;\n float roughness;\n float metallic;\n float occlusion;\n float specularIntensity;\n #if CC_RECEIVE_SHADOW\n vec2 shadowBias;\n #endif\n #if CC_RECEIVE_SHADOW || CC_USE_REFLECTION_PROBE\n float reflectionProbeId;\n #endif\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND || CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n float reflectionProbeBlendId;\n float reflectionProbeBlendFactor;\n #endif\n};\n vec3 SampleReflectionProbe(samplerCube tex, vec3 R, float roughness, float mipCount, bool isRGBE) {\n vec4 envmap = fragTextureLod(tex, R, roughness * (mipCount - 1.0));\n if (isRGBE)\n return unpackRGBE(envmap);\n else\n return SRGBToLinear(envmap.rgb);\n }\nvec4 CCStandardShadingBase (StandardSurface s, vec4 shadowPos) {\n vec3 diffuse = s.albedo.rgb * (1.0 - s.metallic);\n vec3 specular = mix(vec3(0.08 * s.specularIntensity), s.albedo.rgb, s.metallic);\n vec3 position;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n position = unpackHighpData(s.position, s.position_fract_part);\n #else\n position = s.position;\n #endif\n vec3 N = normalize(s.normal);\n vec3 V = normalize(cc_cameraPos.xyz - position);\n vec3 L = normalize(-cc_mainLitDir.xyz);\n float NL = max(dot(N, L), 0.0);\n float shadow = 1.0;\n #if CC_RECEIVE_SHADOW && CC_SHADOW_TYPE == 2\n if (NL > 0.0 && cc_mainLitDir.w > 0.0) {\n #if CC_DIR_LIGHT_SHADOW_TYPE == 2\n shadow = CCCSMFactorBase(position, N, s.shadowBias);\n #endif\n #if CC_DIR_LIGHT_SHADOW_TYPE == 1\n shadow = CCShadowFactorBase(shadowPos, N, s.shadowBias);\n #endif\n }\n #endif\n vec3 finalColor = vec3(0.0);\n #if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n vec3 lightmap = s.lightmap.rgb;\n #if CC_USE_HDR\n lightmap.rgb *= cc_exposure.w * cc_exposure.x;\n #endif\n #if CC_USE_LIGHTMAP == LIGHT_MAP_TYPE_INDIRECT_OCCLUSION\n shadow *= s.lightmap.a;\n finalColor += diffuse * lightmap.rgb;\n #else\n finalColor += diffuse * lightmap.rgb * shadow;\n #endif\n s.occlusion *= s.lightmap_test;\n #endif\n #if !CC_DISABLE_DIRECTIONAL_LIGHT\n float NV = max(abs(dot(N, V)), 0.0);\n specular = BRDFApprox(specular, s.roughness, NV);\n vec3 H = normalize(L + V);\n float NH = max(dot(N, H), 0.0);\n vec3 lightingColor = NL * cc_mainLitColor.rgb * cc_mainLitColor.w;\n vec3 diffuseContrib = diffuse / PI;\n vec3 specularContrib = specular * CalcSpecular(s.roughness, NH, H, N);\n vec3 dirlightContrib = (diffuseContrib + specularContrib);\n dirlightContrib *= shadow;\n finalColor += lightingColor * dirlightContrib;\n #endif\n float fAmb = max(EPSILON, 0.5 - N.y * 0.5);\n vec3 ambDiff = mix(cc_ambientSky.rgb, cc_ambientGround.rgb, fAmb);\n vec3 env = vec3(0.0), rotationDir;\n #if CC_USE_IBL\n #if CC_USE_DIFFUSEMAP && !CC_USE_LIGHT_PROBE\n rotationDir = RotationVecFromAxisY(N.xyz, cc_surfaceTransform.z, cc_surfaceTransform.w);\n vec4 diffuseMap = texture(cc_diffuseMap, rotationDir);\n #if CC_USE_DIFFUSEMAP == 2\n ambDiff = unpackRGBE(diffuseMap);\n #else\n ambDiff = SRGBToLinear(diffuseMap.rgb);\n #endif\n #endif\n #if !CC_USE_REFLECTION_PROBE\n vec3 R = normalize(reflect(-V, N));\n rotationDir = RotationVecFromAxisY(R.xyz, cc_surfaceTransform.z, cc_surfaceTransform.w);\n #if USE_REFLECTION_DENOISE && !CC_IBL_CONVOLUTED\n env = GetEnvReflectionWithMipFiltering(rotationDir, s.roughness, cc_ambientGround.w, 0.6, vec2(0.0));\n #else\n vec4 envmap = fragTextureLod(cc_environment, rotationDir, s.roughness * (cc_ambientGround.w - 1.0));\n #if CC_USE_IBL == 2\n env = unpackRGBE(envmap);\n #else\n env = SRGBToLinear(envmap.rgb);\n #endif\n #endif\n #endif\n #endif\n float lightIntensity = cc_ambientSky.w;\n #if CC_USE_REFLECTION_PROBE\n vec4 probe = vec4(0.0);\n vec3 R = normalize(reflect(-V, N));\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_CUBE\n if(s.reflectionProbeId < 0.0){\n env = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2);\n }else{\n vec3 centerPos, boxHalfSize;\n float mipCount;\n GetCubeReflectionProbeData(centerPos, boxHalfSize, mipCount, s.reflectionProbeId);\n vec4 fixedR = CalculateBoxProjectedDirection(R, position, centerPos, boxHalfSize);\n env = mix(SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2) * lightIntensity,\n SampleReflectionProbe(cc_reflectionProbeCubemap, fixedR.xyz, s.roughness, mipCount, isReflectProbeUsingRGBE(s.reflectionProbeId)), fixedR.w);\n }\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_PLANAR\n if(s.reflectionProbeId < 0.0){\n vec2 screenUV = GetPlanarReflectScreenUV(s.position, cc_matViewProj, cc_cameraPos.w, V, R);\n probe = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, 1.0);\n }else{\n vec4 plane;\n float planarReflectionDepthScale, mipCount;\n GetPlanarReflectionProbeData(plane, planarReflectionDepthScale, mipCount, s.reflectionProbeId);\n R = normalize(CalculateReflectDirection(N, V, max(abs(dot(N, V)), 0.0)));\n vec3 worldPosOffset = CalculatePlanarReflectPositionOnPlane(N, V, s.position, plane, cc_cameraPos.xyz, planarReflectionDepthScale);\n vec2 screenUV = GetPlanarReflectScreenUV(worldPosOffset, cc_matViewProj, cc_cameraPos.w, V, R);\n probe = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, mipCount);\n }\n env = unpackRGBE(probe);\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND || CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n if (s.reflectionProbeId < 0.0) {\n env = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2);\n } else {\n vec3 centerPos, boxHalfSize;\n float mipCount;\n GetCubeReflectionProbeData(centerPos, boxHalfSize, mipCount, s.reflectionProbeId);\n vec4 fixedR = CalculateBoxProjectedDirection(R, s.position, centerPos, boxHalfSize);\n env = SampleReflectionProbe(cc_reflectionProbeCubemap, fixedR.xyz, s.roughness, mipCount, isReflectProbeUsingRGBE(s.reflectionProbeId));\n if (s.reflectionProbeBlendId < 0.0) {\n vec3 skyBoxEnv = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2) * lightIntensity;\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n env = mix(env, skyBoxEnv, s.reflectionProbeBlendFactor);\n #else\n env = mix(skyBoxEnv, env, fixedR.w);\n #endif\n } else {\n vec3 centerPosBlend, boxHalfSizeBlend;\n float mipCountBlend;\n GetBlendCubeReflectionProbeData(centerPosBlend, boxHalfSizeBlend, mipCountBlend, s.reflectionProbeBlendId);\n vec4 fixedRBlend = CalculateBoxProjectedDirection(R, s.position, centerPosBlend, boxHalfSizeBlend);\n vec3 probe1 = SampleReflectionProbe(cc_reflectionProbeBlendCubemap, fixedRBlend.xyz, s.roughness, mipCountBlend, isBlendReflectProbeUsingRGBE(s.reflectionProbeBlendId));\n env = mix(env, probe1, s.reflectionProbeBlendFactor);\n }\n }\n #endif\n #endif\n #if CC_USE_REFLECTION_PROBE\n lightIntensity = s.reflectionProbeId < 0.0 ? lightIntensity : 1.0;\n #endif\n finalColor += env * lightIntensity * specular * s.occlusion;\n#if CC_USE_LIGHT_PROBE\n finalColor += SHEvaluate(N) * diffuse * s.occlusion;\n#endif\n finalColor += ambDiff.rgb * cc_ambientSky.w * diffuse * s.occlusion;\n finalColor += s.emissive;\n return vec4(finalColor, s.albedo.a);\n}\nvec3 ACESToneMap (vec3 color) {\n color = min(color, vec3(8.0));\n const float A = 2.51;\n const float B = 0.03;\n const float C = 2.43;\n const float D = 0.59;\n const float E = 0.14;\n return (color * (A * color + B)) / (color * (C * color + D) + E);\n}\nvec4 CCFragOutput (vec4 color) {\n #if CC_USE_RGBE_OUTPUT\n color = packRGBE(color.rgb);\n #elif !CC_USE_FLOAT_OUTPUT\n #if CC_USE_HDR && CC_TONE_MAPPING_TYPE == HDR_TONE_MAPPING_ACES\n color.rgb = ACESToneMap(color.rgb);\n #endif\n color.rgb = LinearToSRGB(color.rgb);\n #endif\n return color;\n}\nin highp vec4 v_shadowPos;\n#if CC_RECEIVE_SHADOW && CC_SHADOW_TYPE == 2\n#endif\n#if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n in vec3 v_luv;\n uniform sampler2D cc_lightingMap;\n void SampleAndDecodeLightMapColor(out vec3 lightmapColor, out float dirShadow, out float ao, sampler2D lightingMap, vec2 luv, float lum, vec3 worldNormal)\n {\n #if CC_LIGHT_MAP_VERSION > 2\n #elif CC_LIGHT_MAP_VERSION > 1\n \tvec4 dataLow = texture(lightingMap, luv);\n \tvec4 dataHigh = texture(lightingMap, luv + vec2(0.5, 0.0));\n \tlightmapColor.xyz = dataLow.xyz + dataHigh.xyz * 0.00392156862745098;\n lightmapColor.rgb *= lum;\n \tdirShadow = dataLow.a;\n \tao = dataHigh.a;\n #else\n vec4 lightmap = texture(lightingMap, luv);\n lightmapColor = lightmap.rgb * lum;\n \tdirShadow = lightmap.a;\n \tao = 1.0;\n #endif\n }\n#endif\nin vec3 v_position;\nin vec2 v_uv;\nin vec2 v_uv1;\nin vec3 v_normal;\n#if USE_VERTEX_COLOR\n in vec4 v_color;\n#endif\n#if USE_ALBEDO_MAP\n uniform sampler2D albedoMap;\n#endif\n#if USE_NORMAL_MAP\n in vec3 v_tangent;\n in vec3 v_bitangent;\n uniform sampler2D normalMap;\n#endif\n#if USE_PBR_MAP\n uniform sampler2D pbrMap;\n#endif\n#if USE_METALLIC_ROUGHNESS_MAP\n uniform sampler2D metallicRoughnessMap;\n#endif\n#if USE_OCCLUSION_MAP\n uniform sampler2D occlusionMap;\n#endif\n#if USE_EMISSIVE_MAP\n uniform sampler2D emissiveMap;\n#endif\n#if USE_ALPHA_TEST\n#endif\nvoid surf (out StandardSurface s) {\n vec4 baseColor = albedo;\n #if USE_VERTEX_COLOR\n baseColor *= v_color;\n #endif\n #if USE_ALBEDO_MAP\n vec4 texColor = texture(albedoMap, ALBEDO_UV);\n texColor.rgb = SRGBToLinear(texColor.rgb);\n baseColor *= texColor;\n #endif\n s.albedo = baseColor;\n s.albedo.rgb *= albedoScaleAndCutoff.xyz;\n #if USE_ALPHA_TEST\n if (s.albedo.ALPHA_TEST_CHANNEL < albedoScaleAndCutoff.w) discard;\n #endif\n s.normal = v_normal;\n #if USE_NORMAL_MAP\n vec3 nmmp = texture(normalMap, NORMAL_UV).xyz - vec3(0.5);\n s.normal =\n (nmmp.x * pbrParams.w) * normalize(v_tangent) +\n (nmmp.y * pbrParams.w) * normalize(v_bitangent) +\n nmmp.z * normalize(s.normal);\n #endif\n #if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n SampleAndDecodeLightMapColor(s.lightmap.rgb, s.lightmap.a, s.lightmap_test, cc_lightingMap, v_luv.xy, v_luv.z, s.normal);\n #endif\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n packHighpData(s.position, s.position_fract_part, v_position);\n #else\n s.position = v_position;\n #endif\n vec4 pbr = pbrParams;\n pbr.x = 1.0 - pbr.x;\n #if USE_PBR_MAP\n vec4 res = texture(pbrMap, PBR_UV);\n pbr.x *= res.r;\n pbr.y *= res.g;\n pbr.z *= res.b;\n #endif\n #if USE_METALLIC_ROUGHNESS_MAP\n vec4 metallicRoughness = texture(metallicRoughnessMap, PBR_UV);\n pbr.z *= metallicRoughness.b;\n pbr.y *= metallicRoughness.g;\n #endif\n #if USE_OCCLUSION_MAP\n pbr.x *= texture(occlusionMap, PBR_UV).r;\n #endif\n s.occlusion = pbr.x;\n s.roughness = pbr.y;\n s.specularIntensity = 0.5;\n s.metallic = pbr.z;\n s.emissive = emissive.rgb * emissiveScaleParam.xyz;\n #if USE_EMISSIVE_MAP\n s.emissive *= SRGBToLinear(texture(emissiveMap, EMISSIVE_UV).rgb);\n #endif\n}\nuniform sampler2D cc_reflectionTexture;\nlayout(location = 0) out vec4 fragColorX;\nvoid main () {\n StandardSurface s; surf(s);\n vec4 color = CCStandardShadingBase(s, v_shadowPos);\n CC_APPLY_FOG(color, s.position.xyz);\n vec4 baseColor = CCFragOutput(color);\n vec2 noise = v_normal.xy * 0.02;\n #if USE_NORMAL_MAP\n noise = texture(normalMap, ALBEDO_UV).xy * 0.02;\n #endif\n vec2 resolution = cc_screenSize.xy;\n vec2 uv = (gl_FragCoord.xy / resolution) + noise;\n vec4 reflectionColor = texture(cc_reflectionTexture, uv);\n fragColorX = mix(baseColor, reflectionColor, 0.5);\n fragColorX.w = 1.0;\n}" }, "glsl1": { "vert": "\nprecision highp float;\n#define QUATER_PI 0.78539816340\n#define HALF_PI 1.57079632679\n#define PI 3.14159265359\n#define PI2 6.28318530718\n#define PI4 12.5663706144\n#define INV_QUATER_PI 1.27323954474\n#define INV_HALF_PI 0.63661977237\n#define INV_PI 0.31830988618\n#define INV_PI2 0.15915494309\n#define INV_PI4 0.07957747155\n#define EPSILON 1e-6\n#define EPSILON_LOWP 1e-4\n#define LOG2 1.442695\n#define EXP_VALUE 2.71828183\n#define FP_MAX 65504.0\n#define FP_SCALE 0.0009765625\n#define FP_SCALE_INV 1024.0\n#define GRAY_VECTOR vec3(0.299, 0.587, 0.114)\n#define LIGHT_MAP_TYPE_DISABLED 0\n#define LIGHT_MAP_TYPE_ALL_IN_ONE 1\n#define LIGHT_MAP_TYPE_INDIRECT_OCCLUSION 2\n#define REFLECTION_PROBE_TYPE_NONE 0\n#define REFLECTION_PROBE_TYPE_CUBE 1\n#define REFLECTION_PROBE_TYPE_PLANAR 2\n#define REFLECTION_PROBE_TYPE_BLEND 3\n#define REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX 4\n#define LIGHT_TYPE_DIRECTIONAL 0.0\n#define LIGHT_TYPE_SPHERE 1.0\n#define LIGHT_TYPE_SPOT 2.0\n#define LIGHT_TYPE_POINT 3.0\n#define LIGHT_TYPE_RANGED_DIRECTIONAL 4.0\n#define IS_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_DIRECTIONAL)) < EPSILON_LOWP)\n#define IS_SPHERE_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPHERE)) < EPSILON_LOWP)\n#define IS_SPOT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPOT)) < EPSILON_LOWP)\n#define IS_POINT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_POINT)) < EPSILON_LOWP)\n#define IS_RANGED_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_RANGED_DIRECTIONAL)) < EPSILON_LOWP)\n#define TONE_MAPPING_ACES 0\n#define TONE_MAPPING_LINEAR 1\n#define SURFACES_MAX_TRANSMIT_DEPTH_VALUE 999999.0\n#ifndef CC_SURFACES_DEBUG_VIEW_SINGLE\n #define CC_SURFACES_DEBUG_VIEW_SINGLE 1\n#endif\n#ifndef CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC\n #define CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC 2\n#endif\nstruct StandardVertInput {\n highp vec4 position;\n vec3 normal;\n vec4 tangent;\n};\nattribute vec3 a_position;\nattribute vec3 a_normal;\nattribute vec2 a_texCoord;\nattribute vec4 a_tangent;\n#if CC_USE_SKINNING\n attribute vec4 a_joints;\n attribute vec4 a_weights;\n#endif\n#if USE_INSTANCING\n #if CC_USE_BAKED_ANIMATION\n attribute highp vec4 a_jointAnimInfo;\n #endif\n attribute vec4 a_matWorld0;\n attribute vec4 a_matWorld1;\n attribute vec4 a_matWorld2;\n #if CC_USE_LIGHTMAP\n attribute vec4 a_lightingMapUVParam;\n #endif\n #if CC_USE_REFLECTION_PROBE || CC_RECEIVE_SHADOW\n #if CC_RECEIVE_SHADOW\n #endif\n attribute vec4 a_localShadowBiasAndProbeId;\n #endif\n #if CC_USE_REFLECTION_PROBE\n attribute vec4 a_reflectionProbeData;\n #endif\n #if CC_USE_LIGHT_PROBE\n attribute vec4 a_sh_linear_const_r;\n attribute vec4 a_sh_linear_const_g;\n attribute vec4 a_sh_linear_const_b;\n #endif\n#endif\n#if CC_USE_MORPH\n attribute float a_vertexId;\n int getVertexId() {\n return int(a_vertexId);\n }\n#endif\nhighp float decode32 (highp vec4 rgba) {\n rgba = rgba * 255.0;\n highp float Sign = 1.0 - (step(128.0, (rgba[3]) + 0.5)) * 2.0;\n highp float Exponent = 2.0 * (mod(float(int((rgba[3]) + 0.5)), 128.0)) + (step(128.0, (rgba[2]) + 0.5)) - 127.0;\n highp float Mantissa = (mod(float(int((rgba[2]) + 0.5)), 128.0)) * 65536.0 + rgba[1] * 256.0 + rgba[0] + 8388608.0;\n return Sign * exp2(Exponent - 23.0) * Mantissa;\n}\n#if CC_USE_MORPH\n uniform vec4 cc_displacementWeights[15];\n uniform vec4 cc_displacementTextureInfo;\n #if CC_MORPH_TARGET_HAS_POSITION\n uniform sampler2D cc_PositionDisplacements;\n #endif\n #if CC_MORPH_TARGET_HAS_NORMAL\n uniform sampler2D cc_NormalDisplacements;\n #endif\n #if CC_MORPH_TARGET_HAS_TANGENT\n uniform sampler2D cc_TangentDisplacements;\n #endif\n vec2 getPixelLocation(vec2 textureResolution, int pixelIndex) {\n float pixelIndexF = float(pixelIndex);\n float x = mod(pixelIndexF, textureResolution.x);\n float y = floor(pixelIndexF / textureResolution.x);\n return vec2(x, y);\n }\n vec2 getPixelCoordFromLocation(vec2 location, vec2 textureResolution) {\n return (vec2(location.x, location.y) + .5) / textureResolution;\n }\n #if CC_DEVICE_SUPPORT_FLOAT_TEXTURE\n vec4 fetchVec3ArrayFromTexture(sampler2D tex, int elementIndex) {\n int pixelIndex = elementIndex;\n vec2 location = getPixelLocation(cc_displacementTextureInfo.xy, pixelIndex);\n vec2 uv = getPixelCoordFromLocation(location, cc_displacementTextureInfo.xy);\n return texture2D(tex, uv);\n }\n #else\n vec4 fetchVec3ArrayFromTexture(sampler2D tex, int elementIndex) {\n int pixelIndex = elementIndex * 4;\n vec2 location = getPixelLocation(cc_displacementTextureInfo.xy, pixelIndex);\n vec2 x = getPixelCoordFromLocation(location + vec2(0.0, 0.0), cc_displacementTextureInfo.xy);\n vec2 y = getPixelCoordFromLocation(location + vec2(1.0, 0.0), cc_displacementTextureInfo.xy);\n vec2 z = getPixelCoordFromLocation(location + vec2(2.0, 0.0), cc_displacementTextureInfo.xy);\n return vec4(\n decode32(texture2D(tex, x)),\n decode32(texture2D(tex, y)),\n decode32(texture2D(tex, z)),\n 1.0\n );\n }\n #endif\n float getDisplacementWeight(int index) {\n int quot = index / 4;\n int remainder = index - quot * 4;\n if (remainder == 0) {\n return cc_displacementWeights[quot].x;\n } else if (remainder == 1) {\n return cc_displacementWeights[quot].y;\n } else if (remainder == 2) {\n return cc_displacementWeights[quot].z;\n } else {\n return cc_displacementWeights[quot].w;\n }\n }\n vec3 getVec3DisplacementFromTexture(sampler2D tex, int vertexIndex) {\n #if CC_MORPH_PRECOMPUTED\n return fetchVec3ArrayFromTexture(tex, vertexIndex).rgb;\n #else\n vec3 result = vec3(0, 0, 0);\n int nVertices = int(cc_displacementTextureInfo.z);\n for (int iTarget = 0; iTarget < CC_MORPH_TARGET_COUNT; ++iTarget) {\n result += (fetchVec3ArrayFromTexture(tex, nVertices * iTarget + vertexIndex).rgb * getDisplacementWeight(iTarget));\n }\n return result;\n #endif\n }\n #if CC_MORPH_TARGET_HAS_POSITION\n vec3 getPositionDisplacement(int vertexId) {\n return getVec3DisplacementFromTexture(cc_PositionDisplacements, vertexId);\n }\n #endif\n #if CC_MORPH_TARGET_HAS_NORMAL\n vec3 getNormalDisplacement(int vertexId) {\n return getVec3DisplacementFromTexture(cc_NormalDisplacements, vertexId);\n }\n #endif\n #if CC_MORPH_TARGET_HAS_TANGENT\n vec3 getTangentDisplacement(int vertexId) {\n return getVec3DisplacementFromTexture(cc_TangentDisplacements, vertexId);\n }\n #endif\n void applyMorph (inout vec4 position, inout vec3 normal, inout vec4 tangent) {\n int vertexId = getVertexId();\n #if CC_MORPH_TARGET_HAS_POSITION\n position.xyz = position.xyz + getPositionDisplacement(vertexId);\n #endif\n #if CC_MORPH_TARGET_HAS_NORMAL\n normal.xyz = normal.xyz + getNormalDisplacement(vertexId);\n #endif\n #if CC_MORPH_TARGET_HAS_TANGENT\n tangent.xyz = tangent.xyz + getTangentDisplacement(vertexId);\n #endif\n }\n void applyMorph (inout vec4 position) {\n #if CC_MORPH_TARGET_HAS_POSITION\n position.xyz = position.xyz + getPositionDisplacement(getVertexId());\n #endif\n }\n#endif\n#if CC_USE_SKINNING\n #if CC_USE_BAKED_ANIMATION\n uniform highp vec4 cc_jointTextureInfo;\n uniform highp vec4 cc_jointAnimInfo;\n uniform highp sampler2D cc_jointTexture;\n void CCGetJointTextureCoords(float pixelsPerJoint, float jointIdx, out highp float x, out highp float y, out highp float invSize)\n {\n #if USE_INSTANCING\n highp float temp = pixelsPerJoint * (a_jointAnimInfo.x * a_jointAnimInfo.y + jointIdx) + a_jointAnimInfo.z;\n #else\n highp float temp = pixelsPerJoint * (cc_jointAnimInfo.x * cc_jointTextureInfo.y + jointIdx) + cc_jointTextureInfo.z;\n #endif\n invSize = cc_jointTextureInfo.w;\n highp float tempY = floor(temp * invSize);\n x = floor(temp - tempY * cc_jointTextureInfo.x);\n y = (tempY + 0.5) * invSize;\n }\n #else\n #if CC_USE_REAL_TIME_JOINT_TEXTURE\n uniform highp sampler2D cc_realtimeJoint;\n #else\n uniform highp vec4 cc_joints[CC_JOINT_UNIFORM_CAPACITY * 3];\n #endif\n #endif\n #if CC_USE_BAKED_ANIMATION\n #if CC_DEVICE_SUPPORT_FLOAT_TEXTURE\n mat4 getJointMatrix (float i) {\n highp float x, y, invSize;\n CCGetJointTextureCoords(3.0, i, x, y, invSize);\n vec4 v1 = texture2D(cc_jointTexture, vec2((x + 0.5) * invSize, y));\n vec4 v2 = texture2D(cc_jointTexture, vec2((x + 1.5) * invSize, y));\n vec4 v3 = texture2D(cc_jointTexture, vec2((x + 2.5) * invSize, y));\n return mat4(vec4(v1.xyz, 0.0), vec4(v2.xyz, 0.0), vec4(v3.xyz, 0.0), vec4(v1.w, v2.w, v3.w, 1.0));\n }\n #else\n mat4 getJointMatrix (float i) {\n highp float x, y, invSize;\n CCGetJointTextureCoords(12.0, i, x, y, invSize);\n vec4 v1 = vec4(\n decode32(texture2D(cc_jointTexture, vec2((x + 0.5) * invSize, y))),\n decode32(texture2D(cc_jointTexture, vec2((x + 1.5) * invSize, y))),\n decode32(texture2D(cc_jointTexture, vec2((x + 2.5) * invSize, y))),\n decode32(texture2D(cc_jointTexture, vec2((x + 3.5) * invSize, y)))\n );\n vec4 v2 = vec4(\n decode32(texture2D(cc_jointTexture, vec2((x + 4.5) * invSize, y))),\n decode32(texture2D(cc_jointTexture, vec2((x + 5.5) * invSize, y))),\n decode32(texture2D(cc_jointTexture, vec2((x + 6.5) * invSize, y))),\n decode32(texture2D(cc_jointTexture, vec2((x + 7.5) * invSize, y)))\n );\n vec4 v3 = vec4(\n decode32(texture2D(cc_jointTexture, vec2((x + 8.5) * invSize, y))),\n decode32(texture2D(cc_jointTexture, vec2((x + 9.5) * invSize, y))),\n decode32(texture2D(cc_jointTexture, vec2((x + 10.5) * invSize, y))),\n decode32(texture2D(cc_jointTexture, vec2((x + 11.5) * invSize, y)))\n );\n return mat4(vec4(v1.xyz, 0.0), vec4(v2.xyz, 0.0), vec4(v3.xyz, 0.0), vec4(v1.w, v2.w, v3.w, 1.0));\n }\n #endif\n #else\n #if CC_USE_REAL_TIME_JOINT_TEXTURE\n #if CC_DEVICE_SUPPORT_FLOAT_TEXTURE\n mat4 getJointMatrix (float i) {\n float x = i;\n vec4 v1 = texture2D(cc_realtimeJoint, vec2( x / 256.0, 0.5 / 3.0));\n vec4 v2 = texture2D(cc_realtimeJoint, vec2( x / 256.0, 1.5 / 3.0));\n vec4 v3 = texture2D(cc_realtimeJoint, vec2( x / 256.0, 2.5 / 3.0));\n return mat4(vec4(v1.xyz, 0.0), vec4(v2.xyz, 0.0), vec4(v3.xyz, 0.0), vec4(v1.w, v2.w, v3.w, 1.0));\n }\n #else\n mat4 getJointMatrix (float i) {\n float x = 4.0 * i;\n vec4 v1 = vec4(\n decode32(texture2D(cc_realtimeJoint, vec2((x + 0.5)/ 1024.0, 0.5 / 3.0))),\n decode32(texture2D(cc_realtimeJoint, vec2((x + 1.5)/ 1024.0, 0.5 / 3.0))),\n decode32(texture2D(cc_realtimeJoint, vec2((x + 2.5)/ 1024.0, 0.5 / 3.0))),\n decode32(texture2D(cc_realtimeJoint, vec2((x + 3.5)/ 1024.0, 0.5 / 3.0)))\n );\n vec4 v2 = vec4(\n decode32(texture2D(cc_realtimeJoint, vec2((x + 0.5)/ 1024.0, 1.5 / 3.0))),\n decode32(texture2D(cc_realtimeJoint, vec2((x + 1.5)/ 1024.0, 1.5 / 3.0))),\n decode32(texture2D(cc_realtimeJoint, vec2((x + 2.5)/ 1024.0, 1.5 / 3.0))),\n decode32(texture2D(cc_realtimeJoint, vec2((x + 3.5)/ 1024.0, 1.5 / 3.0)))\n );\n vec4 v3 = vec4(\n decode32(texture2D(cc_realtimeJoint, vec2((x + 0.5)/ 1024.0, 2.5 / 3.0))),\n decode32(texture2D(cc_realtimeJoint, vec2((x + 1.5)/ 1024.0, 2.5 / 3.0))),\n decode32(texture2D(cc_realtimeJoint, vec2((x + 2.5)/ 1024.0, 2.5 / 3.0))),\n decode32(texture2D(cc_realtimeJoint, vec2((x + 3.5)/ 1024.0, 2.5 / 3.0)))\n );\n return mat4(vec4(v1.xyz, 0.0), vec4(v2.xyz, 0.0), vec4(v3.xyz, 0.0), vec4(v1.w, v2.w, v3.w, 1.0));\n }\n #endif\n #else\n mat4 getJointMatrix (float i) {\n int idx = int(i);\n vec4 v1 = cc_joints[idx * 3];\n vec4 v2 = cc_joints[idx * 3 + 1];\n vec4 v3 = cc_joints[idx * 3 + 2];\n return mat4(vec4(v1.xyz, 0.0), vec4(v2.xyz, 0.0), vec4(v3.xyz, 0.0), vec4(v1.w, v2.w, v3.w, 1.0));\n }\n #endif\n #endif\n mat4 skinMatrix () {\n vec4 joints = vec4(a_joints);\n return getJointMatrix(joints.x) * a_weights.x\n + getJointMatrix(joints.y) * a_weights.y\n + getJointMatrix(joints.z) * a_weights.z\n + getJointMatrix(joints.w) * a_weights.w;\n }\n void CCSkin (inout vec4 position) {\n mat4 m = skinMatrix();\n position = m * position;\n }\n void CCSkin (inout vec4 position, inout vec3 normal, inout vec4 tangent) {\n mat4 m = skinMatrix();\n position = m * position;\n normal = (m * vec4(normal, 0.0)).xyz;\n tangent.xyz = (m * vec4(tangent.xyz, 0.0)).xyz;\n }\n#endif\nvoid CCVertInput(inout StandardVertInput In)\n{\n In.position = vec4(a_position, 1.0);\n In.normal = a_normal;\n In.tangent = a_tangent;\n #if CC_USE_MORPH\n applyMorph(In.position, In.normal, In.tangent);\n #endif\n #if CC_USE_SKINNING\n CCSkin(In.position, In.normal, In.tangent);\n #endif\n}\nuniform highp mat4 cc_matView;\n uniform highp mat4 cc_matProj;\n uniform highp vec4 cc_cameraPos;\n uniform mediump vec4 cc_fogBase;\n uniform mediump vec4 cc_fogAdd;\n#if !USE_INSTANCING\n uniform highp mat4 cc_matWorld;\n uniform highp mat4 cc_matWorldIT;\n uniform highp vec4 cc_lightingMapUVParam;\n#endif\nvoid CCGetWorldMatrixFull(out mat4 matWorld, out mat4 matWorldIT)\n{\n #if USE_INSTANCING\n matWorld = mat4(\n vec4(a_matWorld0.xyz, 0.0),\n vec4(a_matWorld1.xyz, 0.0),\n vec4(a_matWorld2.xyz, 0.0),\n vec4(a_matWorld0.w, a_matWorld1.w, a_matWorld2.w, 1.0)\n );\n vec3 scale = 1.0 / vec3(length(a_matWorld0.xyz), length(a_matWorld1.xyz), length(a_matWorld2.xyz));\n vec3 scale2 = scale * scale;\n matWorldIT = mat4(\n vec4(a_matWorld0.xyz * scale2.x, 0.0),\n vec4(a_matWorld1.xyz * scale2.y, 0.0),\n vec4(a_matWorld2.xyz * scale2.z, 0.0),\n vec4(0.0, 0.0, 0.0, 1.0)\n );\n #else\n matWorld = cc_matWorld;\n matWorldIT = cc_matWorldIT;\n #endif\n}\n uniform vec4 tilingOffset;\n#if CC_USE_FOG != 4\n float LinearFog(vec4 pos, vec3 cameraPos, float fogStart, float fogEnd) {\n vec4 wPos = pos;\n float cam_dis = distance(cameraPos, wPos.xyz);\n return clamp((fogEnd - cam_dis) / (fogEnd - fogStart), 0., 1.);\n }\n float ExpFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * fogDensity);\n return f;\n }\n float ExpSquaredFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * cam_dis * fogDensity * fogDensity);\n return f;\n }\n float LayeredFog(vec4 pos, vec3 cameraPos, float fogTop, float fogRange, float fogAtten) {\n vec4 wPos = pos;\n vec3 camWorldProj = cameraPos.xyz;\n camWorldProj.y = 0.;\n vec3 worldPosProj = wPos.xyz;\n worldPosProj.y = 0.;\n float fDeltaD = distance(worldPosProj, camWorldProj) / fogAtten * 2.0;\n float fDeltaY, fDensityIntegral;\n if (cameraPos.y > fogTop) {\n if (wPos.y < fogTop) {\n fDeltaY = (fogTop - wPos.y) / fogRange * 2.0;\n fDensityIntegral = fDeltaY * fDeltaY * 0.5;\n }\n else {\n fDeltaY = 0.;\n fDensityIntegral = 0.;\n }\n }\n else {\n if (wPos.y < fogTop) {\n float fDeltaA = (fogTop - cameraPos.y) / fogRange * 2.;\n float fDeltaB = (fogTop - wPos.y) / fogRange * 2.;\n fDeltaY = abs(fDeltaA - fDeltaB);\n fDensityIntegral = abs((fDeltaA * fDeltaA * 0.5) - (fDeltaB * fDeltaB * 0.5));\n }\n else {\n fDeltaY = abs(fogTop - cameraPos.y) / fogRange * 2.;\n fDensityIntegral = abs(fDeltaY * fDeltaY * 0.5);\n }\n }\n float fDensity;\n if (fDeltaY != 0.) {\n fDensity = (sqrt(1.0 + ((fDeltaD / fDeltaY) * (fDeltaD / fDeltaY)))) * fDensityIntegral;\n }\n else {\n fDensity = 0.;\n }\n float f = exp(-fDensity);\n return f;\n }\n#endif\nvoid CC_TRANSFER_FOG_BASE(vec4 pos, out float factor)\n{\n#if CC_USE_FOG == 0\n\tfactor = LinearFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.y);\n#elif CC_USE_FOG == 1\n\tfactor = ExpFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n#elif CC_USE_FOG == 2\n\tfactor = ExpSquaredFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n#elif CC_USE_FOG == 3\n\tfactor = LayeredFog(pos, cc_cameraPos.xyz, cc_fogAdd.x, cc_fogAdd.y, cc_fogAdd.z);\n#else\n\tfactor = 1.0;\n#endif\n}\n#if !CC_USE_ACCURATE_FOG\nvarying mediump float v_fog_factor;\n#endif\nvoid CC_TRANSFER_FOG(vec4 pos) {\n#if !CC_USE_ACCURATE_FOG\n CC_TRANSFER_FOG_BASE(pos, v_fog_factor);\n#endif\n}\nvarying highp vec4 v_shadowPos;\nuniform highp mat4 cc_matLightViewProj;\n#if CC_SUPPORT_CASCADED_SHADOW_MAP\n #endif\n#if defined(CC_USE_METAL) || defined(CC_USE_WGPU)\n#define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y) y = -y\n#else\n#define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y)\n#endif\n#if CC_RECEIVE_SHADOW\n uniform highp sampler2D cc_shadowMap;\n uniform highp sampler2D cc_spotShadowMap;\n #define UnpackBitFromFloat(value, bit) (mod(floor(value / pow(10.0, float(bit))), 10.0) > 0.0)\n #if CC_SUPPORT_CASCADED_SHADOW_MAP\n #else\n #endif\n#endif\n#if CC_RECEIVE_SHADOW\n#endif\n#if CC_USE_LIGHT_PROBE\n #if USE_INSTANCING\n varying mediump vec4 v_sh_linear_const_r;\n varying mediump vec4 v_sh_linear_const_g;\n varying mediump vec4 v_sh_linear_const_b;\n #endif\n#endif\nvoid CC_TRANSFER_SH() {\n#if CC_USE_LIGHT_PROBE\n #if USE_INSTANCING\n v_sh_linear_const_r = a_sh_linear_const_r;\n v_sh_linear_const_g = a_sh_linear_const_g;\n v_sh_linear_const_b = a_sh_linear_const_b;\n #endif\n#endif\n}\n#if USE_VERTEX_COLOR\n attribute vec4 a_color;\n varying vec4 v_color;\n#endif\nvarying vec3 v_position;\nvarying vec3 v_normal;\nvarying vec2 v_uv;\nvarying vec2 v_uv1;\n#if USE_NORMAL_MAP\n varying vec3 v_tangent;\n varying vec3 v_bitangent;\n#endif\n#if HAS_SECOND_UV || CC_USE_LIGHTMAP\n attribute vec2 a_texCoord1;\n#endif\n#if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n varying vec3 v_luv;\n void CCLightingMapCaclUV()\n {\n #if !USE_INSTANCING\n v_luv.xy = cc_lightingMapUVParam.xy + a_texCoord1 * cc_lightingMapUVParam.z;\n v_luv.z = cc_lightingMapUVParam.w;\n #else\n v_luv.xy = a_lightingMapUVParam.xy + a_texCoord1 * a_lightingMapUVParam.z;\n v_luv.z = a_lightingMapUVParam.w;\n #endif\n }\n#endif\nvoid main () {\n StandardVertInput In;\n CCVertInput(In);\n mat4 matWorld, matWorldIT;\n CCGetWorldMatrixFull(matWorld, matWorldIT);\n vec4 pos = matWorld * In.position;\n v_position = pos.xyz;\n v_normal = normalize((matWorldIT * vec4(In.normal, 0.0)).xyz);\n #if USE_NORMAL_MAP\n v_tangent = normalize((matWorld * vec4(In.tangent.xyz, 0.0)).xyz);\n v_bitangent = cross(v_normal, v_tangent) * In.tangent.w;\n #endif\n v_uv = a_texCoord * tilingOffset.xy + tilingOffset.zw;\n #if HAS_SECOND_UV\n v_uv1 = a_texCoord1 * tilingOffset.xy + tilingOffset.zw;\n #endif\n #if USE_VERTEX_COLOR\n v_color = a_color;\n #endif\n CC_TRANSFER_FOG(pos);\n v_shadowPos = cc_matLightViewProj * pos;\n CC_TRANSFER_SH();\n #if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n CCLightingMapCaclUV();\n #endif\n gl_Position = cc_matProj * (cc_matView * matWorld) * In.position;\n}", "frag": "\n#ifdef GL_OES_standard_derivatives\n#extension GL_OES_standard_derivatives: enable\n#endif\n#ifdef GL_EXT_shader_texture_lod\n#extension GL_EXT_shader_texture_lod: enable\n#endif\nprecision highp float;\nuniform mediump vec4 cc_screenSize;\n uniform mediump vec4 cc_probeInfo;\nuniform highp mat4 cc_matViewProj;\n uniform highp vec4 cc_cameraPos;\n uniform mediump vec4 cc_surfaceTransform;\n uniform mediump vec4 cc_exposure;\n uniform mediump vec4 cc_mainLitDir;\n uniform mediump vec4 cc_mainLitColor;\n uniform mediump vec4 cc_ambientSky;\n uniform mediump vec4 cc_ambientGround;\n uniform mediump vec4 cc_fogColor;\n uniform mediump vec4 cc_fogBase;\n uniform mediump vec4 cc_fogAdd;\n uniform vec4 albedo;\n uniform vec4 albedoScaleAndCutoff;\n uniform vec4 pbrParams;\n uniform vec4 emissive;\n uniform vec4 emissiveScaleParam;\n#if CC_USE_FOG != 4\n float LinearFog(vec4 pos, vec3 cameraPos, float fogStart, float fogEnd) {\n vec4 wPos = pos;\n float cam_dis = distance(cameraPos, wPos.xyz);\n return clamp((fogEnd - cam_dis) / (fogEnd - fogStart), 0., 1.);\n }\n float ExpFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * fogDensity);\n return f;\n }\n float ExpSquaredFog(vec4 pos, vec3 cameraPos, float fogStart, float fogDensity, float fogAtten) {\n vec4 wPos = pos;\n float cam_dis = max(distance(cameraPos, wPos.xyz) - fogStart, 0.0) / fogAtten * 4.;\n float f = exp(-cam_dis * cam_dis * fogDensity * fogDensity);\n return f;\n }\n float LayeredFog(vec4 pos, vec3 cameraPos, float fogTop, float fogRange, float fogAtten) {\n vec4 wPos = pos;\n vec3 camWorldProj = cameraPos.xyz;\n camWorldProj.y = 0.;\n vec3 worldPosProj = wPos.xyz;\n worldPosProj.y = 0.;\n float fDeltaD = distance(worldPosProj, camWorldProj) / fogAtten * 2.0;\n float fDeltaY, fDensityIntegral;\n if (cameraPos.y > fogTop) {\n if (wPos.y < fogTop) {\n fDeltaY = (fogTop - wPos.y) / fogRange * 2.0;\n fDensityIntegral = fDeltaY * fDeltaY * 0.5;\n }\n else {\n fDeltaY = 0.;\n fDensityIntegral = 0.;\n }\n }\n else {\n if (wPos.y < fogTop) {\n float fDeltaA = (fogTop - cameraPos.y) / fogRange * 2.;\n float fDeltaB = (fogTop - wPos.y) / fogRange * 2.;\n fDeltaY = abs(fDeltaA - fDeltaB);\n fDensityIntegral = abs((fDeltaA * fDeltaA * 0.5) - (fDeltaB * fDeltaB * 0.5));\n }\n else {\n fDeltaY = abs(fogTop - cameraPos.y) / fogRange * 2.;\n fDensityIntegral = abs(fDeltaY * fDeltaY * 0.5);\n }\n }\n float fDensity;\n if (fDeltaY != 0.) {\n fDensity = (sqrt(1.0 + ((fDeltaD / fDeltaY) * (fDeltaD / fDeltaY)))) * fDensityIntegral;\n }\n else {\n fDensity = 0.;\n }\n float f = exp(-fDensity);\n return f;\n }\n#endif\nvoid CC_TRANSFER_FOG_BASE(vec4 pos, out float factor)\n{\n#if CC_USE_FOG == 0\n\tfactor = LinearFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.y);\n#elif CC_USE_FOG == 1\n\tfactor = ExpFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n#elif CC_USE_FOG == 2\n\tfactor = ExpSquaredFog(pos, cc_cameraPos.xyz, cc_fogBase.x, cc_fogBase.z, cc_fogAdd.z);\n#elif CC_USE_FOG == 3\n\tfactor = LayeredFog(pos, cc_cameraPos.xyz, cc_fogAdd.x, cc_fogAdd.y, cc_fogAdd.z);\n#else\n\tfactor = 1.0;\n#endif\n}\nvoid CC_APPLY_FOG_BASE(inout vec4 color, float factor) {\n\tcolor = vec4(mix(cc_fogColor.rgb, color.rgb, factor), color.a);\n}\n#if !CC_USE_ACCURATE_FOG\nvarying mediump float v_fog_factor;\n#endif\nvoid CC_APPLY_FOG(inout vec4 color) {\n#if !CC_USE_ACCURATE_FOG\n CC_APPLY_FOG_BASE(color, v_fog_factor);\n#endif\n}\nvoid CC_APPLY_FOG(inout vec4 color, vec3 worldPos) {\n#if CC_USE_ACCURATE_FOG\n float factor;\n CC_TRANSFER_FOG_BASE(vec4(worldPos, 1.0), factor);\n#else\n float factor = v_fog_factor;\n#endif\n CC_APPLY_FOG_BASE(color, factor);\n}\n#define QUATER_PI 0.78539816340\n#define HALF_PI 1.57079632679\n#define PI 3.14159265359\n#define PI2 6.28318530718\n#define PI4 12.5663706144\n#define INV_QUATER_PI 1.27323954474\n#define INV_HALF_PI 0.63661977237\n#define INV_PI 0.31830988618\n#define INV_PI2 0.15915494309\n#define INV_PI4 0.07957747155\n#define EPSILON 1e-6\n#define EPSILON_LOWP 1e-4\n#define LOG2 1.442695\n#define EXP_VALUE 2.71828183\n#define FP_MAX 65504.0\n#define FP_SCALE 0.0009765625\n#define FP_SCALE_INV 1024.0\n#define GRAY_VECTOR vec3(0.299, 0.587, 0.114)\n#define LIGHT_MAP_TYPE_DISABLED 0\n#define LIGHT_MAP_TYPE_ALL_IN_ONE 1\n#define LIGHT_MAP_TYPE_INDIRECT_OCCLUSION 2\n#define REFLECTION_PROBE_TYPE_NONE 0\n#define REFLECTION_PROBE_TYPE_CUBE 1\n#define REFLECTION_PROBE_TYPE_PLANAR 2\n#define REFLECTION_PROBE_TYPE_BLEND 3\n#define REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX 4\n#define LIGHT_TYPE_DIRECTIONAL 0.0\n#define LIGHT_TYPE_SPHERE 1.0\n#define LIGHT_TYPE_SPOT 2.0\n#define LIGHT_TYPE_POINT 3.0\n#define LIGHT_TYPE_RANGED_DIRECTIONAL 4.0\n#define IS_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_DIRECTIONAL)) < EPSILON_LOWP)\n#define IS_SPHERE_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPHERE)) < EPSILON_LOWP)\n#define IS_SPOT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_SPOT)) < EPSILON_LOWP)\n#define IS_POINT_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_POINT)) < EPSILON_LOWP)\n#define IS_RANGED_DIRECTIONAL_LIGHT(light_type) (abs(float(light_type) - float(LIGHT_TYPE_RANGED_DIRECTIONAL)) < EPSILON_LOWP)\n#define TONE_MAPPING_ACES 0\n#define TONE_MAPPING_LINEAR 1\n#define SURFACES_MAX_TRANSMIT_DEPTH_VALUE 999999.0\n#ifndef CC_SURFACES_DEBUG_VIEW_SINGLE\n #define CC_SURFACES_DEBUG_VIEW_SINGLE 1\n#endif\n#ifndef CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC\n #define CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC 2\n#endif\nvec3 SRGBToLinear (vec3 gamma) {\n#ifdef CC_USE_SURFACE_SHADER\n #if CC_USE_DEBUG_VIEW == CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC && CC_SURFACES_ENABLE_DEBUG_VIEW\n if (!IS_DEBUG_VIEW_COMPOSITE_ENABLE_GAMMA_CORRECTION) {\n return gamma;\n }\n #endif\n#endif\n return gamma * gamma;\n}\nvec3 LinearToSRGB(vec3 linear) {\n#ifdef CC_USE_SURFACE_SHADER\n #if CC_USE_DEBUG_VIEW == CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC && CC_SURFACES_ENABLE_DEBUG_VIEW\n if (!IS_DEBUG_VIEW_COMPOSITE_ENABLE_GAMMA_CORRECTION) {\n return linear;\n }\n #endif\n#endif\n return sqrt(linear);\n}\nuniform highp mat4 cc_matLightView;\n uniform highp mat4 cc_matLightViewProj;\n uniform highp vec4 cc_shadowProjDepthInfo;\n uniform highp vec4 cc_shadowProjInfo;\n uniform mediump vec4 cc_shadowNFLSInfo;\n uniform mediump vec4 cc_shadowWHPBInfo;\n#if CC_SUPPORT_CASCADED_SHADOW_MAP\n uniform highp vec4 cc_csmViewDir0[4];\n uniform highp vec4 cc_csmViewDir1[4];\n uniform highp vec4 cc_csmViewDir2[4];\n uniform highp vec4 cc_csmAtlas[4];\n uniform highp mat4 cc_matCSMViewProj[4];\n uniform highp vec4 cc_csmProjDepthInfo[4];\n uniform highp vec4 cc_csmProjInfo[4];\n uniform highp vec4 cc_csmSplitsInfo;\n#endif\n#if defined(CC_USE_METAL) || defined(CC_USE_WGPU)\n#define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y) y = -y\n#else\n#define CC_HANDLE_SAMPLE_NDC_FLIP_STATIC(y)\n#endif\nvec2 GetPlanarReflectScreenUV(vec3 worldPos, mat4 matVirtualCameraViewProj, float flipNDCSign, vec3 viewDir, vec3 reflectDir)\n{\n vec4 clipPos = matVirtualCameraViewProj * vec4(worldPos, 1.0);\n vec2 screenUV = clipPos.xy / clipPos.w * 0.5 + 0.5;\n screenUV = vec2(1.0 - screenUV.x, screenUV.y);\n screenUV = flipNDCSign == 1.0 ? vec2(screenUV.x, 1.0 - screenUV.y) : screenUV;\n return screenUV;\n}\nvec3 RotationVecFromAxisY(vec3 v, float cosTheta, float sinTheta)\n{\n vec3 result;\n result.x = dot(v, vec3(cosTheta, 0.0, -sinTheta));\n result.y = v.y;\n result.z = dot(v, vec3(sinTheta, 0.0, cosTheta));\n return result;\n}\nvec3 RotationVecFromAxisY(vec3 v, float rotateAngleArc)\n{\n return RotationVecFromAxisY(v, cos(rotateAngleArc), sin(rotateAngleArc));\n}\n#if CC_RECEIVE_SHADOW\n uniform highp sampler2D cc_shadowMap;\n uniform highp sampler2D cc_spotShadowMap;\n #define UnpackBitFromFloat(value, bit) (mod(floor(value / pow(10.0, float(bit))), 10.0) > 0.0)\n highp float unpackHighpData (float mainPart, float modPart) {\n highp float data = mainPart;\n return data + modPart;\n }\n void packHighpData (out float mainPart, out float modPart, highp float data) {\n mainPart = fract(data);\n modPart = data - mainPart;\n }\n highp float unpackHighpData (float mainPart, float modPart, const float modValue) {\n highp float data = mainPart * modValue;\n return data + modPart * modValue;\n }\n void packHighpData (out float mainPart, out float modPart, highp float data, const float modValue) {\n highp float divide = data / modValue;\n mainPart = floor(divide);\n modPart = (data - mainPart * modValue) / modValue;\n }\n highp vec2 unpackHighpData (vec2 mainPart, vec2 modPart) {\n highp vec2 data = mainPart;\n return data + modPart;\n }\n void packHighpData (out vec2 mainPart, out vec2 modPart, highp vec2 data) {\n mainPart = fract(data);\n modPart = data - mainPart;\n }\n highp vec2 unpackHighpData (vec2 mainPart, vec2 modPart, const float modValue) {\n highp vec2 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n void packHighpData (out vec2 mainPart, out vec2 modPart, highp vec2 data, const float modValue) {\n highp vec2 divide = data / modValue;\n mainPart = floor(divide);\n modPart = (data - mainPart * modValue) / modValue;\n }\n highp vec3 unpackHighpData (vec3 mainPart, vec3 modPart) {\n highp vec3 data = mainPart;\n return data + modPart;\n }\n void packHighpData (out vec3 mainPart, out vec3 modPart, highp vec3 data) {\n mainPart = fract(data);\n modPart = data - mainPart;\n }\n highp vec3 unpackHighpData (vec3 mainPart, vec3 modPart, const float modValue) {\n highp vec3 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n void packHighpData (out vec3 mainPart, out vec3 modPart, highp vec3 data, const float modValue) {\n highp vec3 divide = data / modValue;\n mainPart = floor(divide);\n modPart = (data - mainPart * modValue) / modValue;\n }\n highp vec4 unpackHighpData (vec4 mainPart, vec4 modPart) {\n highp vec4 data = mainPart;\n return data + modPart;\n }\n void packHighpData (out vec4 mainPart, out vec4 modPart, highp vec4 data) {\n mainPart = fract(data);\n modPart = data - mainPart;\n }\n highp vec4 unpackHighpData (vec4 mainPart, vec4 modPart, const float modValue) {\n highp vec4 data = mainPart * modValue;\n return data + modPart * modValue;\n }\n void packHighpData (out vec4 mainPart, out vec4 modPart, highp vec4 data, const float modValue) {\n highp vec4 divide = data / modValue;\n mainPart = floor(divide);\n modPart = (data - mainPart * modValue) / modValue;\n }\n float NativePCFShadowFactorHard (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n #if CC_SHADOWMAP_FORMAT == 1\n return step(shadowNDCPos.z, dot(texture2D(shadowMap, shadowNDCPos.xy), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n return step(shadowNDCPos.z, texture2D(shadowMap, shadowNDCPos.xy).x);\n #endif\n }\n float NativePCFShadowFactorSoft (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n vec2 shadowNDCPos_offset = shadowNDCPos.xy + oneTap;\n float block0, block1, block2, block3;\n #if CC_SHADOWMAP_FORMAT == 1\n block0 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block1 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos_offset.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block0 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)).x);\n block1 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos.y)).x);\n block2 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset.y)).x);\n block3 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos_offset.x, shadowNDCPos_offset.y)).x);\n #endif\n float coefX = mod(shadowNDCPos.x, oneTap.x) * shadowMapResolution.x;\n float resultX = mix(block0, block1, coefX);\n float resultY = mix(block2, block3, coefX);\n float coefY = mod(shadowNDCPos.y, oneTap.y) * shadowMapResolution.y;\n return mix(resultX, resultY, coefY);\n }\n float NativePCFShadowFactorSoft3X (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n float shadowNDCPos_offset_L = shadowNDCPos.x - oneTap.x;\n float shadowNDCPos_offset_R = shadowNDCPos.x + oneTap.x;\n float shadowNDCPos_offset_U = shadowNDCPos.y - oneTap.y;\n float shadowNDCPos_offset_D = shadowNDCPos.y + oneTap.y;\n float block0, block1, block2, block3, block4, block5, block6, block7, block8;\n #if CC_SHADOWMAP_FORMAT == 1\n block0 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block1 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_U)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block4 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block5 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos.y)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block6 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block7 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block8 = step(shadowNDCPos.z, dot(texture2D(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_D)), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block0 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_U)).x);\n block1 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_U)).x);\n block2 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_U)).x);\n block3 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos.y)).x);\n block4 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos.y)).x);\n block5 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos.y)).x);\n block6 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos_offset_L, shadowNDCPos_offset_D)).x);\n block7 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos.x, shadowNDCPos_offset_D)).x);\n block8 = step(shadowNDCPos.z, texture2D(shadowMap, vec2(shadowNDCPos_offset_R, shadowNDCPos_offset_D)).x);\n #endif\n float coefX = mod(shadowNDCPos.x, oneTap.x) * shadowMapResolution.x;\n float coefY = mod(shadowNDCPos.y, oneTap.y) * shadowMapResolution.y;\n float shadow = 0.0;\n float resultX = mix(block0, block1, coefX);\n float resultY = mix(block3, block4, coefX);\n shadow += mix(resultX , resultY, coefY);\n resultX = mix(block1, block2, coefX);\n resultY = mix(block4, block5, coefX);\n shadow += mix(resultX , resultY, coefY);\n resultX = mix(block3, block4, coefX);\n resultY = mix(block6, block7, coefX);\n shadow += mix(resultX, resultY, coefY);\n resultX = mix(block4, block5, coefX);\n resultY = mix(block7, block8, coefX);\n shadow += mix(resultX, resultY, coefY);\n return shadow * 0.25;\n }\n float NativePCFShadowFactorSoft5X (vec3 shadowNDCPos, highp sampler2D shadowMap, vec2 shadowMapResolution)\n {\n vec2 oneTap = 1.0 / shadowMapResolution;\n vec2 twoTap = oneTap * 2.0;\n vec2 offset1 = shadowNDCPos.xy + vec2(-twoTap.x, -twoTap.y);\n vec2 offset2 = shadowNDCPos.xy + vec2(-oneTap.x, -twoTap.y);\n vec2 offset3 = shadowNDCPos.xy + vec2(0.0, -twoTap.y);\n vec2 offset4 = shadowNDCPos.xy + vec2(oneTap.x, -twoTap.y);\n vec2 offset5 = shadowNDCPos.xy + vec2(twoTap.x, -twoTap.y);\n vec2 offset6 = shadowNDCPos.xy + vec2(-twoTap.x, -oneTap.y);\n vec2 offset7 = shadowNDCPos.xy + vec2(-oneTap.x, -oneTap.y);\n vec2 offset8 = shadowNDCPos.xy + vec2(0.0, -oneTap.y);\n vec2 offset9 = shadowNDCPos.xy + vec2(oneTap.x, -oneTap.y);\n vec2 offset10 = shadowNDCPos.xy + vec2(twoTap.x, -oneTap.y);\n vec2 offset11 = shadowNDCPos.xy + vec2(-twoTap.x, 0.0);\n vec2 offset12 = shadowNDCPos.xy + vec2(-oneTap.x, 0.0);\n vec2 offset13 = shadowNDCPos.xy + vec2(0.0, 0.0);\n vec2 offset14 = shadowNDCPos.xy + vec2(oneTap.x, 0.0);\n vec2 offset15 = shadowNDCPos.xy + vec2(twoTap.x, 0.0);\n vec2 offset16 = shadowNDCPos.xy + vec2(-twoTap.x, oneTap.y);\n vec2 offset17 = shadowNDCPos.xy + vec2(-oneTap.x, oneTap.y);\n vec2 offset18 = shadowNDCPos.xy + vec2(0.0, oneTap.y);\n vec2 offset19 = shadowNDCPos.xy + vec2(oneTap.x, oneTap.y);\n vec2 offset20 = shadowNDCPos.xy + vec2(twoTap.x, oneTap.y);\n vec2 offset21 = shadowNDCPos.xy + vec2(-twoTap.x, twoTap.y);\n vec2 offset22 = shadowNDCPos.xy + vec2(-oneTap.x, twoTap.y);\n vec2 offset23 = shadowNDCPos.xy + vec2(0.0, twoTap.y);\n vec2 offset24 = shadowNDCPos.xy + vec2(oneTap.x, twoTap.y);\n vec2 offset25 = shadowNDCPos.xy + vec2(twoTap.x, twoTap.y);\n float block1, block2, block3, block4, block5, block6, block7, block8, block9, block10, block11, block12, block13, block14, block15, block16, block17, block18, block19, block20, block21, block22, block23, block24, block25;\n #if CC_SHADOWMAP_FORMAT == 1\n block1 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset1), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block2 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset2), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block3 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset3), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block4 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset4), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block5 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset5), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block6 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset6), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block7 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset7), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block8 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset8), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block9 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset9), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block10 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset10), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block11 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset11), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block12 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset12), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block13 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset13), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block14 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset14), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block15 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset15), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block16 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset16), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block17 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset17), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block18 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset18), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block19 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset19), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block20 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset20), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block21 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset21), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block22 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset22), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block23 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset23), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block24 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset24), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n block25 = step(shadowNDCPos.z, dot(texture2D(shadowMap, offset25), vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 16581375.0)));\n #else\n block1 = step(shadowNDCPos.z, texture2D(shadowMap, offset1).x);\n block2 = step(shadowNDCPos.z, texture2D(shadowMap, offset2).x);\n block3 = step(shadowNDCPos.z, texture2D(shadowMap, offset3).x);\n block4 = step(shadowNDCPos.z, texture2D(shadowMap, offset4).x);\n block5 = step(shadowNDCPos.z, texture2D(shadowMap, offset5).x);\n block6 = step(shadowNDCPos.z, texture2D(shadowMap, offset6).x);\n block7 = step(shadowNDCPos.z, texture2D(shadowMap, offset7).x);\n block8 = step(shadowNDCPos.z, texture2D(shadowMap, offset8).x);\n block9 = step(shadowNDCPos.z, texture2D(shadowMap, offset9).x);\n block10 = step(shadowNDCPos.z, texture2D(shadowMap, offset10).x);\n block11 = step(shadowNDCPos.z, texture2D(shadowMap, offset11).x);\n block12 = step(shadowNDCPos.z, texture2D(shadowMap, offset12).x);\n block13 = step(shadowNDCPos.z, texture2D(shadowMap, offset13).x);\n block14 = step(shadowNDCPos.z, texture2D(shadowMap, offset14).x);\n block15 = step(shadowNDCPos.z, texture2D(shadowMap, offset15).x);\n block16 = step(shadowNDCPos.z, texture2D(shadowMap, offset16).x);\n block17 = step(shadowNDCPos.z, texture2D(shadowMap, offset17).x);\n block18 = step(shadowNDCPos.z, texture2D(shadowMap, offset18).x);\n block19 = step(shadowNDCPos.z, texture2D(shadowMap, offset19).x);\n block20 = step(shadowNDCPos.z, texture2D(shadowMap, offset20).x);\n block21 = step(shadowNDCPos.z, texture2D(shadowMap, offset21).x);\n block22 = step(shadowNDCPos.z, texture2D(shadowMap, offset22).x);\n block23 = step(shadowNDCPos.z, texture2D(shadowMap, offset23).x);\n block24 = step(shadowNDCPos.z, texture2D(shadowMap, offset24).x);\n block25 = step(shadowNDCPos.z, texture2D(shadowMap, offset25).x);\n #endif\n vec2 coef = fract(shadowNDCPos.xy * shadowMapResolution);\n vec2 v1X1 = mix(vec2(block1, block6), vec2(block2, block7), coef.xx);\n vec2 v1X2 = mix(vec2(block2, block7), vec2(block3, block8), coef.xx);\n vec2 v1X3 = mix(vec2(block3, block8), vec2(block4, block9), coef.xx);\n vec2 v1X4 = mix(vec2(block4, block9), vec2(block5, block10), coef.xx);\n float v1 = mix(v1X1.x, v1X1.y, coef.y) + mix(v1X2.x, v1X2.y, coef.y) + mix(v1X3.x, v1X3.y, coef.y) + mix(v1X4.x, v1X4.y, coef.y);\n vec2 v2X1 = mix(vec2(block6, block11), vec2(block7, block12), coef.xx);\n vec2 v2X2 = mix(vec2(block7, block12), vec2(block8, block13), coef.xx);\n vec2 v2X3 = mix(vec2(block8, block13), vec2(block9, block14), coef.xx);\n vec2 v2X4 = mix(vec2(block9, block14), vec2(block10, block15), coef.xx);\n float v2 = mix(v2X1.x, v2X1.y, coef.y) + mix(v2X2.x, v2X2.y, coef.y) + mix(v2X3.x, v2X3.y, coef.y) + mix(v2X4.x, v2X4.y, coef.y);\n vec2 v3X1 = mix(vec2(block11, block16), vec2(block12, block17), coef.xx);\n vec2 v3X2 = mix(vec2(block12, block17), vec2(block13, block18), coef.xx);\n vec2 v3X3 = mix(vec2(block13, block18), vec2(block14, block19), coef.xx);\n vec2 v3X4 = mix(vec2(block14, block19), vec2(block15, block20), coef.xx);\n float v3 = mix(v3X1.x, v3X1.y, coef.y) + mix(v3X2.x, v3X2.y, coef.y) + mix(v3X3.x, v3X3.y, coef.y) + mix(v3X4.x, v3X4.y, coef.y);\n vec2 v4X1 = mix(vec2(block16, block21), vec2(block17, block22), coef.xx);\n vec2 v4X2 = mix(vec2(block17, block22), vec2(block18, block23), coef.xx);\n vec2 v4X3 = mix(vec2(block18, block23), vec2(block19, block24), coef.xx);\n vec2 v4X4 = mix(vec2(block19, block24), vec2(block20, block25), coef.xx);\n float v4 = mix(v4X1.x, v4X1.y, coef.y) + mix(v4X2.x, v4X2.y, coef.y) + mix(v4X3.x, v4X3.y, coef.y) + mix(v4X4.x, v4X4.y, coef.y);\n float fAvg = (v1 + v2 + v3 + v4) * 0.0625;\n return fAvg;\n }\n bool GetShadowNDCPos(out vec3 shadowNDCPos, vec4 shadowPosWithDepthBias)\n {\n \tshadowNDCPos = shadowPosWithDepthBias.xyz / shadowPosWithDepthBias.w * 0.5 + 0.5;\n \tif (shadowNDCPos.x < 0.0 || shadowNDCPos.x > 1.0 ||\n \t\tshadowNDCPos.y < 0.0 || shadowNDCPos.y > 1.0 ||\n \t\tshadowNDCPos.z < 0.0 || shadowNDCPos.z > 1.0) {\n \t\treturn false;\n \t}\n \tshadowNDCPos.xy = cc_cameraPos.w == 1.0 ? vec2(shadowNDCPos.xy.x, 1.0 - shadowNDCPos.xy.y) : shadowNDCPos.xy;\n \treturn true;\n }\n vec4 ApplyShadowDepthBias_FaceNormal(vec4 shadowPos, vec3 worldNormal, float normalBias, vec3 matViewDir0, vec3 matViewDir1, vec3 matViewDir2, vec2 projScaleXY)\n {\n vec4 newShadowPos = shadowPos;\n if (normalBias > EPSILON_LOWP)\n {\n vec3 viewNormal = vec3(dot(matViewDir0, worldNormal), dot(matViewDir1, worldNormal), dot(matViewDir2, worldNormal));\n if (viewNormal.z < 0.1)\n newShadowPos.xy += viewNormal.xy * projScaleXY * normalBias * clamp(viewNormal.z, 0.001, 0.1);\n }\n return newShadowPos;\n }\n vec4 ApplyShadowDepthBias_FaceNormal(vec4 shadowPos, vec3 worldNormal, float normalBias, mat4 matLightView, vec2 projScaleXY)\n {\n \tvec4 newShadowPos = shadowPos;\n \tif (normalBias > EPSILON_LOWP)\n \t{\n \t\tvec4 viewNormal = matLightView * vec4(worldNormal, 0.0);\n \t\tif (viewNormal.z < 0.1)\n \t\t\tnewShadowPos.xy += viewNormal.xy * projScaleXY * normalBias * clamp(viewNormal.z, 0.001, 0.1);\n \t}\n \treturn newShadowPos;\n }\n float GetViewSpaceDepthFromNDCDepth_Orthgraphic(float NDCDepth, float projScaleZ, float projBiasZ)\n {\n \treturn (NDCDepth - projBiasZ) / projScaleZ;\n }\n vec4 ApplyShadowDepthBias_Orthographic(vec4 shadowPos, float viewspaceDepthBias, float projScaleZ, float projBiasZ)\n {\n \tfloat coeffA = projScaleZ;\n \tfloat coeffB = projBiasZ;\n \tfloat viewSpacePos_z = GetViewSpaceDepthFromNDCDepth_Orthgraphic(shadowPos.z, projScaleZ, projBiasZ);\n \tviewSpacePos_z += viewspaceDepthBias;\n \tvec4 result = shadowPos;\n \tresult.z = viewSpacePos_z * coeffA + coeffB;\n \treturn result;\n }\n float CCGetDirLightShadowFactorHard (vec4 shadowPosWithDepthBias) {\n\t vec3 shadowNDCPos;\n\t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n\t\t return 1.0;\n\t }\n return NativePCFShadowFactorHard(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft (vec4 shadowPosWithDepthBias) {\n\t vec3 shadowNDCPos;\n\t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n\t\t return 1.0;\n\t }\n return NativePCFShadowFactorSoft(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft3X (vec4 shadowPosWithDepthBias) {\n\t vec3 shadowNDCPos;\n\t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n\t\t return 1.0;\n\t }\n return NativePCFShadowFactorSoft3X(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCGetDirLightShadowFactorSoft5X (vec4 shadowPosWithDepthBias) {\n\t vec3 shadowNDCPos;\n\t if (!GetShadowNDCPos(shadowNDCPos, shadowPosWithDepthBias)) {\n\t\t return 1.0;\n\t }\n return NativePCFShadowFactorSoft5X(shadowNDCPos, cc_shadowMap, cc_shadowWHPBInfo.xy);\n }\n float CCShadowFactorBase(out vec4 shadowPosWithDepthBias, vec4 shadowPos, vec3 N, vec2 shadowBias)\n {\n vec4 pos = ApplyShadowDepthBias_FaceNormal(shadowPos, N, shadowBias.y, cc_matLightView, cc_shadowProjInfo.xy);\n pos = ApplyShadowDepthBias_Orthographic(pos, shadowBias.x, cc_shadowProjDepthInfo.x, cc_shadowProjDepthInfo.y);\n float realtimeShadow = 1.0;\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n realtimeShadow = CCGetDirLightShadowFactorSoft5X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n realtimeShadow = CCGetDirLightShadowFactorSoft3X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n realtimeShadow = CCGetDirLightShadowFactorSoft(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n realtimeShadow = CCGetDirLightShadowFactorHard(pos);\n #endif\n shadowPosWithDepthBias = pos;\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n }\n #if CC_SUPPORT_CASCADED_SHADOW_MAP\n bool CCGetCSMLevelWithTransition(out highp float ratio, vec3 clipPos) {\n highp float maxRange = 1.0 - cc_csmSplitsInfo.x;\n highp float minRange = cc_csmSplitsInfo.x;\n highp float thresholdInvert = 1.0 / cc_csmSplitsInfo.x;\n ratio = 0.0;\n if (clipPos.x <= minRange) {\n ratio = clipPos.x * thresholdInvert;\n return true;\n }\n if (clipPos.x >= maxRange) {\n ratio = 1.0 - (clipPos.x - maxRange) * thresholdInvert;\n return true;\n }\n if (clipPos.y <= minRange) {\n ratio = clipPos.y * thresholdInvert;\n return true;\n }\n if (clipPos.y >= maxRange) {\n ratio = 1.0 - (clipPos.y - maxRange) * thresholdInvert;\n return true;\n }\n return false;\n }\n bool CCHasCSMLevel(int level, vec3 worldPos) {\n highp float layerThreshold = cc_csmViewDir0[0].w;\n bool hasLevel = false;\n for (int i = 0; i < 4; i++) {\n if (i == level) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0) {\n hasLevel = true;\n }\n }\n }\n return hasLevel;\n }\n void CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos, int level) {\n highp float layerThreshold = cc_csmViewDir0[0].w;\n for (int i = 0; i < 4; i++) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0 && i == level) {\n csmPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n csmPos.xy = csmPos.xy * cc_csmAtlas[i].xy + cc_csmAtlas[i].zw;\n shadowProjDepthInfo = cc_csmProjDepthInfo[i];\n shadowProjInfo = cc_csmProjInfo[i];\n shadowViewDir0 = cc_csmViewDir0[i].xyz;\n shadowViewDir1 = cc_csmViewDir1[i].xyz;\n shadowViewDir2 = cc_csmViewDir2[i].xyz;\n }\n }\n }\n int CCGetCSMLevel(out bool isTransitionArea, out highp float transitionRatio, out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos)\n {\n int level = -1;\n highp float layerThreshold = cc_csmViewDir0[0].w;\n for (int i = 0; i < 4; i++) {\n vec4 shadowPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n vec3 clipPos = shadowPos.xyz / shadowPos.w * 0.5 + 0.5;\n if (clipPos.x >= layerThreshold && clipPos.x <= (1.0 - layerThreshold) &&\n clipPos.y >= layerThreshold && clipPos.y <= (1.0 - layerThreshold) &&\n clipPos.z >= 0.0 && clipPos.z <= 1.0 && level < 0) {\n #if CC_CASCADED_LAYERS_TRANSITION\n isTransitionArea = CCGetCSMLevelWithTransition(transitionRatio, clipPos);\n #endif\n csmPos = cc_matCSMViewProj[i] * vec4(worldPos.xyz, 1.0);\n csmPos.xy = csmPos.xy * cc_csmAtlas[i].xy + cc_csmAtlas[i].zw;\n shadowProjDepthInfo = cc_csmProjDepthInfo[i];\n shadowProjInfo = cc_csmProjInfo[i];\n shadowViewDir0 = cc_csmViewDir0[i].xyz;\n shadowViewDir1 = cc_csmViewDir1[i].xyz;\n shadowViewDir2 = cc_csmViewDir2[i].xyz;\n level = i;\n }\n }\n return level;\n }\n int CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos)\n {\n bool isTransitionArea = false;\n highp float transitionRatio = 0.0;\n return CCGetCSMLevel(isTransitionArea, transitionRatio, csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n }\n float CCCSMFactorBase(out vec4 csmPos, out vec4 csmPosWithBias, vec3 worldPos, vec3 N, vec2 shadowBias)\n {\n bool isTransitionArea = false;\n highp float ratio = 0.0;\n csmPos = vec4(1.0);\n vec4 shadowProjDepthInfo, shadowProjInfo;\n vec3 shadowViewDir0, shadowViewDir1, shadowViewDir2;\n int level = -1;\n #if CC_CASCADED_LAYERS_TRANSITION\n level = CCGetCSMLevel(isTransitionArea, ratio, csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n #else\n level = CCGetCSMLevel(csmPos, shadowProjDepthInfo, shadowProjInfo, shadowViewDir0, shadowViewDir1, shadowViewDir2, worldPos);\n #endif\n if (level < 0) { return 1.0; }\n vec4 pos = ApplyShadowDepthBias_FaceNormal(csmPos, N, shadowBias.y, shadowViewDir0, shadowViewDir1, shadowViewDir2, shadowProjInfo.xy);\n pos = ApplyShadowDepthBias_Orthographic(pos, shadowBias.x, shadowProjDepthInfo.x, shadowProjDepthInfo.y);\n csmPosWithBias = pos;\n float realtimeShadow = 1.0;\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n realtimeShadow = CCGetDirLightShadowFactorSoft5X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n realtimeShadow = CCGetDirLightShadowFactorSoft3X(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n realtimeShadow = CCGetDirLightShadowFactorSoft(pos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n realtimeShadow = CCGetDirLightShadowFactorHard(pos);\n #endif\n #if CC_CASCADED_LAYERS_TRANSITION\n vec4 nextCSMPos = vec4(1.0);\n vec4 nextShadowProjDepthInfo, nextShadowProjInfo;\n vec3 nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2;\n float nextRealtimeShadow = 1.0;\n CCGetCSMLevel(nextCSMPos, nextShadowProjDepthInfo, nextShadowProjInfo, nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2, worldPos, level + 1);\n bool hasNextLevel = CCHasCSMLevel(level + 1, worldPos);\n if (hasNextLevel && isTransitionArea) {\n vec4 nexPos = ApplyShadowDepthBias_FaceNormal(nextCSMPos, N, shadowBias.y, nextShadowViewDir0, nextShadowViewDir1, nextShadowViewDir2, nextShadowProjInfo.xy);\n nexPos = ApplyShadowDepthBias_Orthographic(nexPos, shadowBias.x, nextShadowProjDepthInfo.x, nextShadowProjDepthInfo.y);\n #if CC_DIR_SHADOW_PCF_TYPE == 3\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft5X(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 2\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft3X(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 1\n nextRealtimeShadow = CCGetDirLightShadowFactorSoft(nexPos);\n #endif\n #if CC_DIR_SHADOW_PCF_TYPE == 0\n nextRealtimeShadow = CCGetDirLightShadowFactorHard(nexPos);\n #endif\n return mix(mix(nextRealtimeShadow, realtimeShadow, ratio), 1.0, cc_shadowNFLSInfo.w);\n }\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n #else\n return mix(realtimeShadow, 1.0, cc_shadowNFLSInfo.w);\n #endif\n }\n #else\n int CCGetCSMLevel(out vec4 csmPos, out vec4 shadowProjDepthInfo, out vec4 shadowProjInfo, out vec3 shadowViewDir0, out vec3 shadowViewDir1, out vec3 shadowViewDir2, vec3 worldPos) {\n return -1;\n }\n float CCCSMFactorBase(out vec4 csmPos, out vec4 csmPosWithBias, vec3 worldPos, vec3 N, vec2 shadowBias) {\n csmPos = cc_matLightViewProj * vec4(worldPos, 1.0);\n return CCShadowFactorBase(csmPosWithBias, csmPos, N, shadowBias);\n }\n #endif\n float CCShadowFactorBase(vec4 shadowPos, vec3 N, vec2 shadowBias) {\n vec4 shadowPosWithDepthBias;\n return CCShadowFactorBase(shadowPosWithDepthBias, shadowPos, N, shadowBias);\n }\n float CCCSMFactorBase(vec3 worldPos, vec3 N, vec2 shadowBias) {\n vec4 csmPos, csmPosWithBias;\n return CCCSMFactorBase(csmPos, csmPosWithBias, worldPos, N, shadowBias);\n }\n#endif\nhighp float decode32 (highp vec4 rgba) {\n rgba = rgba * 255.0;\n highp float Sign = 1.0 - (step(128.0, (rgba[3]) + 0.5)) * 2.0;\n highp float Exponent = 2.0 * (mod(float(int((rgba[3]) + 0.5)), 128.0)) + (step(128.0, (rgba[2]) + 0.5)) - 127.0;\n highp float Mantissa = (mod(float(int((rgba[2]) + 0.5)), 128.0)) * 65536.0 + rgba[1] * 256.0 + rgba[0] + 8388608.0;\n return Sign * exp2(Exponent - 23.0) * Mantissa;\n}\nvec4 packRGBE (vec3 rgb) {\n highp float maxComp = max(max(rgb.r, rgb.g), rgb.b);\n highp float e = 128.0;\n if (maxComp > 0.0001) {\n e = log(maxComp) / log(1.1);\n e = ceil(e);\n e = clamp(e + 128.0, 0.0, 255.0);\n }\n highp float sc = 1.0 / pow(1.1, e - 128.0);\n vec3 encode = clamp(rgb * sc, vec3(0.0), vec3(1.0)) * 255.0;\n vec3 encode_rounded = floor(encode) + step(encode - floor(encode), vec3(0.5));\n return vec4(encode_rounded, e) / 255.0;\n}\nvec3 unpackRGBE (vec4 rgbe) {\n return rgbe.rgb * pow(1.1, rgbe.a * 255.0 - 128.0);\n}\nvec4 fragTextureLod (sampler2D tex, vec2 coord, float lod) {\n #ifdef GL_EXT_shader_texture_lod\n return texture2DLodEXT(tex, coord, lod);\n #else\n return texture2D(tex, coord, lod);\n #endif\n}\nvec4 fragTextureLod (samplerCube tex, vec3 coord, float lod) {\n #ifdef GL_EXT_shader_texture_lod\n return textureCubeLodEXT(tex, coord, lod);\n #else\n return textureCube(tex, coord, lod);\n #endif\n}\nuniform samplerCube cc_environment;\nvec3 CalculateReflectDirection(vec3 N, vec3 V, float NoV)\n{\n float sideSign = NoV < 0.0 ? -1.0 : 1.0;\n N *= sideSign;\n return reflect(-V, N);\n}\nvec3 CalculatePlanarReflectPositionOnPlane(vec3 N, vec3 V, vec3 worldPos, vec4 plane, vec3 cameraPos, float probeReflectedDepth)\n{\n float distPixelToPlane = -dot(plane, vec4(worldPos, 1.0));\n plane.w += distPixelToPlane;\n float distCameraToPlane = abs(-dot(plane, vec4(cameraPos, 1.0)));\n vec3 planeN = plane.xyz;\n vec3 virtualCameraPos = cameraPos - 2.0 * distCameraToPlane * planeN;\n vec3 bumpedR = normalize(reflect(-V, N));\n vec3 reflectedPointPos = worldPos + probeReflectedDepth * bumpedR;\n vec3 virtualCameraToReflectedPoint = normalize(reflectedPointPos - virtualCameraPos);\n float y = distCameraToPlane / max(EPSILON_LOWP, dot(planeN, virtualCameraToReflectedPoint));\n return virtualCameraPos + y * virtualCameraToReflectedPoint;\n}\nvec4 CalculateBoxProjectedDirection(vec3 R, vec3 worldPos, vec3 cubeCenterPos, vec3 cubeBoxHalfSize)\n{\n vec3 W = worldPos - cubeCenterPos;\n vec3 projectedLength = (sign(R) * cubeBoxHalfSize - W) / (R + vec3(EPSILON));\n float len = min(min(projectedLength.x, projectedLength.y), projectedLength.z);\n vec3 P = W + len * R;\n float weight = len < 0.0 ? 0.0 : 1.0;\n return vec4(P, weight);\n}\n#if CC_USE_IBL\n #if CC_USE_DIFFUSEMAP\n uniform samplerCube cc_diffuseMap;\n #endif\n#endif\n#if CC_USE_REFLECTION_PROBE\n uniform samplerCube cc_reflectionProbeCubemap;\n uniform sampler2D cc_reflectionProbePlanarMap;\n uniform sampler2D cc_reflectionProbeDataMap;\n uniform samplerCube cc_reflectionProbeBlendCubemap;\n uniform highp vec4 cc_reflectionProbeData1;\n uniform highp vec4 cc_reflectionProbeData2;\n uniform highp vec4 cc_reflectionProbeBlendData1;\n uniform highp vec4 cc_reflectionProbeBlendData2;\n vec4 GetTexData(sampler2D dataMap, float dataMapWidth, float x, float uv_y)\n {\n return vec4(\n decode32(texture2D(dataMap, vec2(((x + 0.5)/dataMapWidth), uv_y))),\n decode32(texture2D(dataMap, vec2(((x + 1.5)/dataMapWidth), uv_y))),\n decode32(texture2D(dataMap, vec2(((x + 2.5)/dataMapWidth), uv_y))),\n decode32(texture2D(dataMap, vec2(((x + 3.5)/dataMapWidth), uv_y)))\n );\n }\n void GetPlanarReflectionProbeData(out vec4 plane, out float planarReflectionDepthScale, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n plane.xyz = texData1.xyz;\n plane.w = texData2.x;\n planarReflectionDepthScale = texData2.y;\n mipCount = texData2.z;\n #else\n plane = cc_reflectionProbeData1;\n planarReflectionDepthScale = cc_reflectionProbeData2.x;\n mipCount = cc_reflectionProbeData2.w;\n #endif\n }\n void GetCubeReflectionProbeData(out vec3 centerPos, out vec3 boxHalfSize, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n centerPos = texData1.xyz;\n boxHalfSize = texData2.xyz;\n mipCount = texData3.x;\n #else\n centerPos = cc_reflectionProbeData1.xyz;\n boxHalfSize = cc_reflectionProbeData2.xyz;\n mipCount = cc_reflectionProbeData2.w;\n #endif\n if (mipCount > 1000.0) mipCount -= 1000.0;\n }\n bool isReflectProbeUsingRGBE(float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n return texData3.x > 1000.0;\n #else\n return cc_reflectionProbeData2.w > 1000.0;\n #endif\n }\n bool isBlendReflectProbeUsingRGBE(float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n return texData3.x > 1000.0;\n #else\n return cc_reflectionProbeBlendData2.w > 1000.0;\n #endif\n }\n void GetBlendCubeReflectionProbeData(out vec3 centerPos, out vec3 boxHalfSize, out float mipCount, float probeId)\n {\n #if USE_INSTANCING\n float uv_y = (probeId + 0.5) / cc_probeInfo.x;\n float dataMapWidth = 12.0;\n vec4 texData1 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 0.0, uv_y);\n vec4 texData2 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 4.0, uv_y);\n vec4 texData3 = GetTexData(cc_reflectionProbeDataMap, dataMapWidth, 8.0, uv_y);\n centerPos = texData1.xyz;\n boxHalfSize = texData2.xyz;\n mipCount = texData3.x;\n #else\n centerPos = cc_reflectionProbeBlendData1.xyz;\n boxHalfSize = cc_reflectionProbeBlendData2.xyz;\n mipCount = cc_reflectionProbeBlendData2.w;\n #endif\n if (mipCount > 1000.0) mipCount -= 1000.0;\n }\n#endif\n#if CC_USE_LIGHT_PROBE\n#if CC_USE_LIGHT_PROBE\n #if USE_INSTANCING\n varying mediump vec4 v_sh_linear_const_r;\n varying mediump vec4 v_sh_linear_const_g;\n varying mediump vec4 v_sh_linear_const_b;\n #else\n uniform vec4 cc_sh_linear_const_r;\n uniform vec4 cc_sh_linear_const_g;\n uniform vec4 cc_sh_linear_const_b;\n uniform vec4 cc_sh_quadratic_r;\n uniform vec4 cc_sh_quadratic_g;\n uniform vec4 cc_sh_quadratic_b;\n uniform vec4 cc_sh_quadratic_a;\n #endif\n #if CC_USE_LIGHT_PROBE\n vec3 SHEvaluate(vec3 normal)\n {\n vec3 result;\n #if USE_INSTANCING\n vec4 normal4 = vec4(normal, 1.0);\n result.r = dot(v_sh_linear_const_r, normal4);\n result.g = dot(v_sh_linear_const_g, normal4);\n result.b = dot(v_sh_linear_const_b, normal4);\n #else\n vec4 normal4 = vec4(normal, 1.0);\n result.r = dot(cc_sh_linear_const_r, normal4);\n result.g = dot(cc_sh_linear_const_g, normal4);\n result.b = dot(cc_sh_linear_const_b, normal4);\n vec4 n14 = normal.xyzz * normal.yzzx;\n float n5 = normal.x * normal.x - normal.y * normal.y;\n result.r += dot(cc_sh_quadratic_r, n14);\n result.g += dot(cc_sh_quadratic_g, n14);\n result.b += dot(cc_sh_quadratic_b, n14);\n result += (cc_sh_quadratic_a.rgb * n5);\n #endif\n #if CC_USE_HDR\n result *= cc_exposure.w * cc_exposure.x;\n #endif\n return result;\n }\n #endif\n#endif\n#endif\nfloat GGXMobile (float roughness, float NoH, vec3 H, vec3 N) {\n vec3 NxH = cross(N, H);\n float OneMinusNoHSqr = dot(NxH, NxH);\n float a = roughness * roughness;\n float n = NoH * a;\n float p = a / max(EPSILON, OneMinusNoHSqr + n * n);\n return p * p;\n}\nfloat CalcSpecular (float roughness, float NoH, vec3 H, vec3 N) {\n return (roughness * 0.25 + 0.25) * GGXMobile(roughness, NoH, H, N);\n}\nvec3 BRDFApprox (vec3 specular, float roughness, float NoV) {\n const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);\n const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);\n vec4 r = roughness * c0 + c1;\n float a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y;\n vec2 AB = vec2(-1.04, 1.04) * a004 + r.zw;\n AB.y *= clamp(50.0 * specular.g, 0.0, 1.0);\n return max(vec3(0.0), specular * AB.x + AB.y);\n}\n#if USE_REFLECTION_DENOISE\n vec3 GetEnvReflectionWithMipFiltering(vec3 R, float roughness, float mipCount, float denoiseIntensity, vec2 screenUV) {\n #if CC_USE_IBL\n \tfloat mip = roughness * (mipCount - 1.0);\n \tfloat delta = (dot(dFdx(R), dFdy(R))) * 1000.0;\n \tfloat mipBias = mix(0.0, 5.0, clamp(delta, 0.0, 1.0));\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_CUBE\n vec4 biased = fragTextureLod(cc_reflectionProbeCubemap, R, mip + mipBias);\n \t vec4 filtered = textureCube(cc_reflectionProbeCubemap, R);\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_PLANAR\n vec4 biased = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, mip + mipBias);\n vec4 filtered = texture2D(cc_reflectionProbePlanarMap, screenUV);\n #else\n vec4 biased = fragTextureLod(cc_environment, R, mip + mipBias);\n \t vec4 filtered = textureCube(cc_environment, R);\n #endif\n #if CC_USE_IBL == 2 || CC_USE_REFLECTION_PROBE != REFLECTION_PROBE_TYPE_NONE\n biased.rgb = unpackRGBE(biased);\n \tfiltered.rgb = unpackRGBE(filtered);\n #else\n \tbiased.rgb = SRGBToLinear(biased.rgb);\n \tfiltered.rgb = SRGBToLinear(filtered.rgb);\n #endif\n return mix(biased.rgb, filtered.rgb, denoiseIntensity);\n #else\n return vec3(0.0, 0.0, 0.0);\n #endif\n }\n#endif\nstruct StandardSurface {\n vec4 albedo;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n vec3 position, position_fract_part;\n #else\n vec3 position;\n #endif\n vec3 normal;\n vec3 emissive;\n vec4 lightmap;\n float lightmap_test;\n float roughness;\n float metallic;\n float occlusion;\n float specularIntensity;\n #if CC_RECEIVE_SHADOW\n vec2 shadowBias;\n #endif\n #if CC_RECEIVE_SHADOW || CC_USE_REFLECTION_PROBE\n float reflectionProbeId;\n #endif\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND || CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n float reflectionProbeBlendId;\n float reflectionProbeBlendFactor;\n #endif\n};\n vec3 SampleReflectionProbe(samplerCube tex, vec3 R, float roughness, float mipCount, bool isRGBE) {\n vec4 envmap = fragTextureLod(tex, R, roughness * (mipCount - 1.0));\n if (isRGBE)\n return unpackRGBE(envmap);\n else\n return SRGBToLinear(envmap.rgb);\n }\nvec4 CCStandardShadingBase (StandardSurface s, vec4 shadowPos) {\n vec3 diffuse = s.albedo.rgb * (1.0 - s.metallic);\n vec3 specular = mix(vec3(0.08 * s.specularIntensity), s.albedo.rgb, s.metallic);\n vec3 position;\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n position = unpackHighpData(s.position, s.position_fract_part);\n #else\n position = s.position;\n #endif\n vec3 N = normalize(s.normal);\n vec3 V = normalize(cc_cameraPos.xyz - position);\n vec3 L = normalize(-cc_mainLitDir.xyz);\n float NL = max(dot(N, L), 0.0);\n float shadow = 1.0;\n #if CC_RECEIVE_SHADOW && CC_SHADOW_TYPE == 2\n if (NL > 0.0 && cc_mainLitDir.w > 0.0) {\n #if CC_DIR_LIGHT_SHADOW_TYPE == 2\n shadow = CCCSMFactorBase(position, N, s.shadowBias);\n #endif\n #if CC_DIR_LIGHT_SHADOW_TYPE == 1\n shadow = CCShadowFactorBase(shadowPos, N, s.shadowBias);\n #endif\n }\n #endif\n vec3 finalColor = vec3(0.0);\n #if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n vec3 lightmap = s.lightmap.rgb;\n #if CC_USE_HDR\n lightmap.rgb *= cc_exposure.w * cc_exposure.x;\n #endif\n #if CC_USE_LIGHTMAP == LIGHT_MAP_TYPE_INDIRECT_OCCLUSION\n shadow *= s.lightmap.a;\n finalColor += diffuse * lightmap.rgb;\n #else\n finalColor += diffuse * lightmap.rgb * shadow;\n #endif\n s.occlusion *= s.lightmap_test;\n #endif\n #if !CC_DISABLE_DIRECTIONAL_LIGHT\n float NV = max(abs(dot(N, V)), 0.0);\n specular = BRDFApprox(specular, s.roughness, NV);\n vec3 H = normalize(L + V);\n float NH = max(dot(N, H), 0.0);\n vec3 lightingColor = NL * cc_mainLitColor.rgb * cc_mainLitColor.w;\n vec3 diffuseContrib = diffuse / PI;\n vec3 specularContrib = specular * CalcSpecular(s.roughness, NH, H, N);\n vec3 dirlightContrib = (diffuseContrib + specularContrib);\n dirlightContrib *= shadow;\n finalColor += lightingColor * dirlightContrib;\n #endif\n float fAmb = max(EPSILON, 0.5 - N.y * 0.5);\n vec3 ambDiff = mix(cc_ambientSky.rgb, cc_ambientGround.rgb, fAmb);\n vec3 env = vec3(0.0), rotationDir;\n #if CC_USE_IBL\n #if CC_USE_DIFFUSEMAP && !CC_USE_LIGHT_PROBE\n rotationDir = RotationVecFromAxisY(N.xyz, cc_surfaceTransform.z, cc_surfaceTransform.w);\n vec4 diffuseMap = textureCube(cc_diffuseMap, rotationDir);\n #if CC_USE_DIFFUSEMAP == 2\n ambDiff = unpackRGBE(diffuseMap);\n #else\n ambDiff = SRGBToLinear(diffuseMap.rgb);\n #endif\n #endif\n #if !CC_USE_REFLECTION_PROBE\n vec3 R = normalize(reflect(-V, N));\n rotationDir = RotationVecFromAxisY(R.xyz, cc_surfaceTransform.z, cc_surfaceTransform.w);\n #if USE_REFLECTION_DENOISE && !CC_IBL_CONVOLUTED\n env = GetEnvReflectionWithMipFiltering(rotationDir, s.roughness, cc_ambientGround.w, 0.6, vec2(0.0));\n #else\n vec4 envmap = fragTextureLod(cc_environment, rotationDir, s.roughness * (cc_ambientGround.w - 1.0));\n #if CC_USE_IBL == 2\n env = unpackRGBE(envmap);\n #else\n env = SRGBToLinear(envmap.rgb);\n #endif\n #endif\n #endif\n #endif\n float lightIntensity = cc_ambientSky.w;\n #if CC_USE_REFLECTION_PROBE\n vec4 probe = vec4(0.0);\n vec3 R = normalize(reflect(-V, N));\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_CUBE\n if(s.reflectionProbeId < 0.0){\n env = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2);\n }else{\n vec3 centerPos, boxHalfSize;\n float mipCount;\n GetCubeReflectionProbeData(centerPos, boxHalfSize, mipCount, s.reflectionProbeId);\n vec4 fixedR = CalculateBoxProjectedDirection(R, position, centerPos, boxHalfSize);\n env = mix(SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2) * lightIntensity,\n SampleReflectionProbe(cc_reflectionProbeCubemap, fixedR.xyz, s.roughness, mipCount, isReflectProbeUsingRGBE(s.reflectionProbeId)), fixedR.w);\n }\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_PLANAR\n if(s.reflectionProbeId < 0.0){\n vec2 screenUV = GetPlanarReflectScreenUV(s.position, cc_matViewProj, cc_cameraPos.w, V, R);\n probe = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, 1.0);\n }else{\n vec4 plane;\n float planarReflectionDepthScale, mipCount;\n GetPlanarReflectionProbeData(plane, planarReflectionDepthScale, mipCount, s.reflectionProbeId);\n R = normalize(CalculateReflectDirection(N, V, max(abs(dot(N, V)), 0.0)));\n vec3 worldPosOffset = CalculatePlanarReflectPositionOnPlane(N, V, s.position, plane, cc_cameraPos.xyz, planarReflectionDepthScale);\n vec2 screenUV = GetPlanarReflectScreenUV(worldPosOffset, cc_matViewProj, cc_cameraPos.w, V, R);\n probe = fragTextureLod(cc_reflectionProbePlanarMap, screenUV, mipCount);\n }\n env = unpackRGBE(probe);\n #elif CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND || CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n if (s.reflectionProbeId < 0.0) {\n env = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2);\n } else {\n vec3 centerPos, boxHalfSize;\n float mipCount;\n GetCubeReflectionProbeData(centerPos, boxHalfSize, mipCount, s.reflectionProbeId);\n vec4 fixedR = CalculateBoxProjectedDirection(R, s.position, centerPos, boxHalfSize);\n env = SampleReflectionProbe(cc_reflectionProbeCubemap, fixedR.xyz, s.roughness, mipCount, isReflectProbeUsingRGBE(s.reflectionProbeId));\n if (s.reflectionProbeBlendId < 0.0) {\n vec3 skyBoxEnv = SampleReflectionProbe(cc_environment, R, s.roughness, cc_ambientGround.w, CC_USE_IBL == 2) * lightIntensity;\n #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_BLEND_AND_SKYBOX\n env = mix(env, skyBoxEnv, s.reflectionProbeBlendFactor);\n #else\n env = mix(skyBoxEnv, env, fixedR.w);\n #endif\n } else {\n vec3 centerPosBlend, boxHalfSizeBlend;\n float mipCountBlend;\n GetBlendCubeReflectionProbeData(centerPosBlend, boxHalfSizeBlend, mipCountBlend, s.reflectionProbeBlendId);\n vec4 fixedRBlend = CalculateBoxProjectedDirection(R, s.position, centerPosBlend, boxHalfSizeBlend);\n vec3 probe1 = SampleReflectionProbe(cc_reflectionProbeBlendCubemap, fixedRBlend.xyz, s.roughness, mipCountBlend, isBlendReflectProbeUsingRGBE(s.reflectionProbeBlendId));\n env = mix(env, probe1, s.reflectionProbeBlendFactor);\n }\n }\n #endif\n #endif\n #if CC_USE_REFLECTION_PROBE\n lightIntensity = s.reflectionProbeId < 0.0 ? lightIntensity : 1.0;\n #endif\n finalColor += env * lightIntensity * specular * s.occlusion;\n#if CC_USE_LIGHT_PROBE\n finalColor += SHEvaluate(N) * diffuse * s.occlusion;\n#endif\n finalColor += ambDiff.rgb * cc_ambientSky.w * diffuse * s.occlusion;\n finalColor += s.emissive;\n return vec4(finalColor, s.albedo.a);\n}\nvec3 ACESToneMap (vec3 color) {\n color = min(color, vec3(8.0));\n const float A = 2.51;\n const float B = 0.03;\n const float C = 2.43;\n const float D = 0.59;\n const float E = 0.14;\n return (color * (A * color + B)) / (color * (C * color + D) + E);\n}\nvec4 CCFragOutput (vec4 color) {\n #if CC_USE_RGBE_OUTPUT\n color = packRGBE(color.rgb);\n #elif !CC_USE_FLOAT_OUTPUT\n #if CC_USE_HDR && CC_TONE_MAPPING_TYPE == HDR_TONE_MAPPING_ACES\n color.rgb = ACESToneMap(color.rgb);\n #endif\n color.rgb = LinearToSRGB(color.rgb);\n #endif\n return color;\n}\nvarying highp vec4 v_shadowPos;\n#if CC_RECEIVE_SHADOW && CC_SHADOW_TYPE == 2\n#endif\n#if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n varying vec3 v_luv;\n uniform sampler2D cc_lightingMap;\n void SampleAndDecodeLightMapColor(out vec3 lightmapColor, out float dirShadow, out float ao, sampler2D lightingMap, vec2 luv, float lum, vec3 worldNormal)\n {\n #if CC_LIGHT_MAP_VERSION > 2\n #elif CC_LIGHT_MAP_VERSION > 1\n \tvec4 dataLow = texture2D(lightingMap, luv);\n \tvec4 dataHigh = texture2D(lightingMap, luv + vec2(0.5, 0.0));\n \tlightmapColor.xyz = dataLow.xyz + dataHigh.xyz * 0.00392156862745098;\n lightmapColor.rgb *= lum;\n \tdirShadow = dataLow.a;\n \tao = dataHigh.a;\n #else\n vec4 lightmap = texture2D(lightingMap, luv);\n lightmapColor = lightmap.rgb * lum;\n \tdirShadow = lightmap.a;\n \tao = 1.0;\n #endif\n }\n#endif\nvarying vec3 v_position;\nvarying vec2 v_uv;\nvarying vec2 v_uv1;\nvarying vec3 v_normal;\n#if USE_VERTEX_COLOR\n varying vec4 v_color;\n#endif\n#if USE_ALBEDO_MAP\n uniform sampler2D albedoMap;\n#endif\n#if USE_NORMAL_MAP\n varying vec3 v_tangent;\n varying vec3 v_bitangent;\n uniform sampler2D normalMap;\n#endif\n#if USE_PBR_MAP\n uniform sampler2D pbrMap;\n#endif\n#if USE_METALLIC_ROUGHNESS_MAP\n uniform sampler2D metallicRoughnessMap;\n#endif\n#if USE_OCCLUSION_MAP\n uniform sampler2D occlusionMap;\n#endif\n#if USE_EMISSIVE_MAP\n uniform sampler2D emissiveMap;\n#endif\n#if USE_ALPHA_TEST\n#endif\nvoid surf (out StandardSurface s) {\n vec4 baseColor = albedo;\n #if USE_VERTEX_COLOR\n baseColor *= v_color;\n #endif\n #if USE_ALBEDO_MAP\n vec4 texColor = texture2D(albedoMap, ALBEDO_UV);\n texColor.rgb = SRGBToLinear(texColor.rgb);\n baseColor *= texColor;\n #endif\n s.albedo = baseColor;\n s.albedo.rgb *= albedoScaleAndCutoff.xyz;\n #if USE_ALPHA_TEST\n if (s.albedo.ALPHA_TEST_CHANNEL < albedoScaleAndCutoff.w) discard;\n #endif\n s.normal = v_normal;\n #if USE_NORMAL_MAP\n vec3 nmmp = texture2D(normalMap, NORMAL_UV).xyz - vec3(0.5);\n s.normal =\n (nmmp.x * pbrParams.w) * normalize(v_tangent) +\n (nmmp.y * pbrParams.w) * normalize(v_bitangent) +\n nmmp.z * normalize(s.normal);\n #endif\n #if CC_USE_LIGHTMAP && !CC_FORWARD_ADD\n SampleAndDecodeLightMapColor(s.lightmap.rgb, s.lightmap.a, s.lightmap_test, cc_lightingMap, v_luv.xy, v_luv.z, s.normal);\n #endif\n #if CC_PLATFORM_ANDROID_AND_WEBGL && CC_ENABLE_WEBGL_HIGHP_STRUCT_VALUES\n packHighpData(s.position, s.position_fract_part, v_position);\n #else\n s.position = v_position;\n #endif\n vec4 pbr = pbrParams;\n pbr.x = 1.0 - pbr.x;\n #if USE_PBR_MAP\n vec4 res = texture2D(pbrMap, PBR_UV);\n pbr.x *= res.r;\n pbr.y *= res.g;\n pbr.z *= res.b;\n #endif\n #if USE_METALLIC_ROUGHNESS_MAP\n vec4 metallicRoughness = texture2D(metallicRoughnessMap, PBR_UV);\n pbr.z *= metallicRoughness.b;\n pbr.y *= metallicRoughness.g;\n #endif\n #if USE_OCCLUSION_MAP\n pbr.x *= texture2D(occlusionMap, PBR_UV).r;\n #endif\n s.occlusion = pbr.x;\n s.roughness = pbr.y;\n s.specularIntensity = 0.5;\n s.metallic = pbr.z;\n s.emissive = emissive.rgb * emissiveScaleParam.xyz;\n #if USE_EMISSIVE_MAP\n s.emissive *= SRGBToLinear(texture2D(emissiveMap, EMISSIVE_UV).rgb);\n #endif\n}\nuniform sampler2D cc_reflectionTexture;\nvoid main () {\n StandardSurface s; surf(s);\n vec4 color = CCStandardShadingBase(s, v_shadowPos);\n CC_APPLY_FOG(color, s.position.xyz);\n vec4 baseColor = CCFragOutput(color);\n vec2 noise = v_normal.xy * 0.02;\n #if USE_NORMAL_MAP\n noise = texture2D(normalMap, ALBEDO_UV).xy * 0.02;\n #endif\n vec2 resolution = cc_screenSize.xy;\n vec2 uv = (gl_FragCoord.xy / resolution) + noise;\n vec4 reflectionColor = texture2D(cc_reflectionTexture, uv);\n gl_FragColor = mix(baseColor, reflectionColor, 0.5);\n gl_FragColor.w = 1.0;\n}" }, "builtins": { "globals": { "blocks": [ { "name": "CCGlobal", "defines": [] }, { "name": "CCCamera", "defines": [] }, { "name": "CCShadow", "defines": [] }, { "name": "CCCSM", "defines": [ "CC_SUPPORT_CASCADED_SHADOW_MAP" ] } ], "samplerTextures": [ { "name": "cc_shadowMap", "defines": [ "CC_RECEIVE_SHADOW" ] }, { "name": "cc_spotShadowMap", "defines": [ "CC_RECEIVE_SHADOW" ] }, { "name": "cc_environment", "defines": [] }, { "name": "cc_diffuseMap", "defines": [ "CC_USE_IBL", "CC_USE_DIFFUSEMAP" ] } ], "buffers": [], "images": [] }, "locals": { "blocks": [ { "name": "CCMorph", "defines": [ "CC_USE_MORPH" ] }, { "name": "CCSkinningTexture", "defines": [ "CC_USE_SKINNING", "CC_USE_BAKED_ANIMATION" ] }, { "name": "CCSkinningAnimation", "defines": [ "CC_USE_SKINNING", "CC_USE_BAKED_ANIMATION" ] }, { "name": "CCSkinning", "defines": [ "CC_USE_SKINNING", "!CC_USE_BAKED_ANIMATION", "!CC_USE_REAL_TIME_JOINT_TEXTURE" ] }, { "name": "CCLocal", "defines": [ "!USE_INSTANCING" ] }, { "name": "CCSH", "defines": [ "CC_USE_LIGHT_PROBE", "!USE_INSTANCING" ] } ], "samplerTextures": [ { "name": "cc_PositionDisplacements", "defines": [ "CC_USE_MORPH", "CC_MORPH_TARGET_HAS_POSITION" ] }, { "name": "cc_NormalDisplacements", "defines": [ "CC_USE_MORPH", "CC_MORPH_TARGET_HAS_NORMAL" ] }, { "name": "cc_TangentDisplacements", "defines": [ "CC_USE_MORPH", "CC_MORPH_TARGET_HAS_TANGENT" ] }, { "name": "cc_jointTexture", "defines": [ "CC_USE_SKINNING", "CC_USE_BAKED_ANIMATION" ] }, { "name": "cc_realtimeJoint", "defines": [ "CC_USE_SKINNING", "!CC_USE_BAKED_ANIMATION", "CC_USE_REAL_TIME_JOINT_TEXTURE" ] }, { "name": "cc_reflectionProbeCubemap", "defines": [ "CC_USE_REFLECTION_PROBE" ] }, { "name": "cc_reflectionProbePlanarMap", "defines": [ "CC_USE_REFLECTION_PROBE" ] }, { "name": "cc_reflectionProbeDataMap", "defines": [ "CC_USE_REFLECTION_PROBE" ] }, { "name": "cc_reflectionProbeBlendCubemap", "defines": [ "CC_USE_REFLECTION_PROBE" ] }, { "name": "cc_lightingMap", "defines": [ "CC_USE_LIGHTMAP", "!CC_FORWARD_ADD" ] }, { "name": "cc_reflectionTexture", "defines": [] } ], "buffers": [], "images": [] }, "statistics": { "CC_EFFECT_USED_VERTEX_UNIFORM_VECTORS": 137, "CC_EFFECT_USED_FRAGMENT_UNIFORM_VECTORS": 126 } }, "defines": [ { "name": "USE_INSTANCING", "type": "boolean", "defines": [], "editor": { "elevated": true } }, { "name": "CC_USE_SKINNING", "type": "boolean", "defines": [] }, { "name": "CC_USE_BAKED_ANIMATION", "type": "boolean", "defines": [ "USE_INSTANCING" ] }, { "name": "CC_USE_LIGHTMAP", "type": "number", "defines": [], "range": [ 0, 3 ] }, { "name": "CC_USE_REFLECTION_PROBE", "type": "number", "defines": [], "range": [ 0, 3 ] }, { "name": "CC_RECEIVE_SHADOW", "type": "boolean", "defines": [] }, { "name": "CC_USE_LIGHT_PROBE", "type": "boolean", "defines": [], "default": 0 }, { "name": "CC_USE_MORPH", "type": "boolean", "defines": [] }, { "name": "CC_MORPH_TARGET_COUNT", "type": "number", "defines": [ "CC_USE_MORPH" ], "range": [ 2, 8 ] }, { "name": "CC_MORPH_TARGET_HAS_POSITION", "type": "boolean", "defines": [ "CC_USE_MORPH" ] }, { "name": "CC_MORPH_TARGET_HAS_NORMAL", "type": "boolean", "defines": [ "CC_USE_MORPH" ] }, { "name": "CC_MORPH_TARGET_HAS_TANGENT", "type": "boolean", "defines": [ "CC_USE_MORPH" ] }, { "name": "CC_MORPH_PRECOMPUTED", "type": "boolean", "defines": [ "CC_USE_MORPH" ] }, { "name": "CC_USE_REAL_TIME_JOINT_TEXTURE", "type": "boolean", "defines": [ "CC_USE_SKINNING", "!CC_USE_BAKED_ANIMATION" ] }, { "name": "CC_USE_FOG", "type": "number", "defines": [], "range": [ 0, 4 ] }, { "name": "CC_USE_ACCURATE_FOG", "type": "boolean", "defines": [] }, { "name": "CC_SUPPORT_CASCADED_SHADOW_MAP", "type": "boolean", "defines": [] }, { "name": "USE_VERTEX_COLOR", "type": "boolean", "defines": [] }, { "name": "USE_NORMAL_MAP", "type": "boolean", "defines": [] }, { "name": "HAS_SECOND_UV", "type": "boolean", "defines": [] }, { "name": "CC_FORWARD_ADD", "type": "boolean", "defines": [ "CC_USE_LIGHTMAP" ] }, { "name": "CC_USE_DEBUG_VIEW", "type": "number", "defines": [], "range": [ 0, 3 ] }, { "name": "CC_SURFACES_ENABLE_DEBUG_VIEW", "type": "boolean", "defines": [ "CC_USE_DEBUG_VIEW", "CC_SURFACES_DEBUG_VIEW_COMPOSITE_AND_MISC" ] }, { "name": "CC_SHADOWMAP_FORMAT", "type": "number", "defines": [ "CC_RECEIVE_SHADOW" ], "range": [ 0, 3 ] }, { "name": "CC_DIR_SHADOW_PCF_TYPE", "type": "number", "defines": [ "CC_RECEIVE_SHADOW" ], "range": [ 0, 3 ] }, { "name": "CC_CASCADED_LAYERS_TRANSITION", "type": "boolean", "defines": [ "CC_RECEIVE_SHADOW", "CC_SUPPORT_CASCADED_SHADOW_MAP" ] }, { "name": "CC_USE_IBL", "type": "number", "defines": [], "range": [ 0, 2 ] }, { "name": "CC_USE_DIFFUSEMAP", "type": "number", "defines": [ "CC_USE_IBL" ], "range": [ 0, 2 ] }, { "name": "CC_USE_HDR", "type": "boolean", "defines": [ "CC_USE_LIGHTMAP", "!CC_FORWARD_ADD" ] }, { "name": "USE_REFLECTION_DENOISE", "type": "boolean", "defines": [] }, { "name": "CC_SHADOW_TYPE", "type": "number", "defines": [ "CC_RECEIVE_SHADOW" ], "range": [ 0, 3 ] }, { "name": "CC_DIR_LIGHT_SHADOW_TYPE", "type": "number", "defines": [ "CC_RECEIVE_SHADOW", "CC_SHADOW_TYPE" ], "range": [ 0, 3 ] }, { "name": "CC_DISABLE_DIRECTIONAL_LIGHT", "type": "boolean", "defines": [] }, { "name": "CC_IBL_CONVOLUTED", "type": "boolean", "defines": [ "USE_REFLECTION_DENOISE", "CC_USE_IBL", "!CC_USE_REFLECTION_PROBE" ] }, { "name": "CC_USE_RGBE_OUTPUT", "type": "boolean", "defines": [] }, { "name": "CC_USE_FLOAT_OUTPUT", "type": "boolean", "defines": [ "!CC_USE_RGBE_OUTPUT" ] }, { "name": "CC_TONE_MAPPING_TYPE", "type": "number", "defines": [ "CC_USE_HDR", "!CC_USE_RGBE_OUTPUT", "!CC_USE_FLOAT_OUTPUT" ], "range": [ 0, 3 ] }, { "name": "HDR_TONE_MAPPING_ACES", "type": "boolean", "defines": [ "CC_USE_HDR", "CC_TONE_MAPPING_TYPE", "!CC_USE_RGBE_OUTPUT", "!CC_USE_FLOAT_OUTPUT" ] }, { "name": "CC_LIGHT_MAP_VERSION", "type": "number", "defines": [ "CC_USE_LIGHTMAP", "!CC_FORWARD_ADD" ], "range": [ 0, 3 ] }, { "name": "USE_ALBEDO_MAP", "type": "boolean", "defines": [] }, { "name": "ALBEDO_UV", "type": "string", "defines": [ "USE_ALBEDO_MAP" ], "options": [ "v_uv", "v_uv1" ] }, { "name": "NORMAL_UV", "type": "string", "defines": [ "USE_NORMAL_MAP" ], "options": [ "v_uv", "v_uv1" ] }, { "name": "PBR_UV", "type": "string", "defines": [], "options": [ "v_uv", "v_uv1" ] }, { "name": "USE_PBR_MAP", "type": "boolean", "defines": [] }, { "name": "USE_METALLIC_ROUGHNESS_MAP", "type": "boolean", "defines": [] }, { "name": "USE_OCCLUSION_MAP", "type": "boolean", "defines": [] }, { "name": "USE_EMISSIVE_MAP", "type": "boolean", "defines": [] }, { "name": "EMISSIVE_UV", "type": "string", "defines": [ "USE_EMISSIVE_MAP" ], "options": [ "v_uv", "v_uv1" ] }, { "name": "USE_ALPHA_TEST", "type": "boolean", "defines": [] }, { "name": "ALPHA_TEST_CHANNEL", "type": "string", "defines": [ "USE_ALPHA_TEST" ], "options": [ "a", "r" ] } ], "name": "internal/builtin-reflection-deferred|standard-vs|standard-fs" } ], "combinations": [], "hideInEditor": false }